某天回家之时,听到有个朋友说起他正在做一个车牌识别的项目

于是对其定位车牌的位置算法颇有兴趣,今日有空得以研究,事实上车牌识别算是比较成熟的技术了,

这里我只是简单实现。

我的思路为:

对图片进行一些预处理,包括灰度化、高斯平滑、中值滤波、Sobel算子边缘检测等等。

利用OpenCV对预处理后的图像进行轮廓查找,然后根据一些参数判断该轮廓是否为车牌轮廓。

效果如下:

test1:

python实现车牌识别的示例代码

python实现车牌识别的示例代码

test2

python实现车牌识别的示例代码

python实现车牌识别的示例代码

实现代码如下(对图像预处理(滤波器等)的原理比较简单,这里只是对一些函数进行调包):

import cv2
import numpy as np
 
 
# 形态学处理
def Process(img):
	# 高斯平滑
	gaussian = cv2.GaussianBlur(img, (3, 3), 0, 0, cv2.BORDER_DEFAULT)
	# 中值滤波
	median = cv2.medianBlur(gaussian, 5)
	# Sobel算子
	# 梯度方向: x
	sobel = cv2.Sobel(median, cv2.CV_8U, 1, 0, ksize=3)
	# 二值化
	ret, binary = cv2.threshold(sobel, 170, 255, cv2.THRESH_BINARY)
	# 核函数
	element1 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 1))
	element2 = cv2.getStructuringElement(cv2.MORPH_RECT, (9, 7))
	# 膨胀
	dilation = cv2.dilate(binary, element2, iterations=1)
	# 腐蚀
	erosion = cv2.erode(dilation, element1, iterations=1)
	# 膨胀
	dilation2 = cv2.dilate(erosion, element2, iterations=3)
	return dilation2
 
 
def GetRegion(img):
	regions = []
	# 查找轮廓
	_, contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
	for contour in contours:
		area = cv2.contourArea(contour)
		if (area < 2000):
			continue
		eps = 1e-3 * cv2.arcLength(contour, True)
		approx = cv2.approxPolyDP(contour, eps, True)
		rect = cv2.minAreaRect(contour)
		box = cv2.boxPoints(rect)
		box = np.int0(box)
		height = abs(box[0][1] - box[2][1])
		width = abs(box[0][0] - box[2][0])
		ratio =float(width) / float(height)
		if (ratio < 5 and ratio > 1.8):
			regions.append(box)
	return regions
 
 
def detect(img):
	# 灰度化
	gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
	prc = Process(gray)
	regions = GetRegion(prc)
	print('[INFO]:Detect %d license plates' % len(regions))
	for box in regions:
		cv2.drawContours(img, [box], 0, (0, 255, 0), 2)
	cv2.imshow('Result', img)
  #保存结果文件名
	cv2.imwrite('result2.jpg', img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()
 
 
if __name__ == '__main__':
  #输入的参数为图片的路径
	img = cv2.imread('test2.jpg')
	detect(img)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。