从 0 开始制作一个 NodeJS 命令行验证码识别工具。实现如下效果。
初始化项目
# 创建 recognition 项目 mkdir recognition cd recognition npm init -y # 安装主依赖 yarn add images tesseract.js # 安装工具依赖 yarn add chalk yargs # 可选依赖 yarn add socks5-http-client
依赖说明
images :Node.js 轻量级跨平台图像编码库,用于处理下载下来的图片
tesseract.js :纯 JS 实现的 OCR(光学字符识别)工具,用于图像内容识别
chalk :让命令行内容样式好看
yargs :命令行参数解析器
socks5-http-client :SOCKS v5,用于设置代理,在需要拉取某些不能直接访问的资源时使用, request proxy 例子
项目准备
新建 cli.js
通常命令行工具入口名字为 cli.js
,我们新建一个 cli.js
文件,并在开头写上:
#!/usr/bin/env node
这样,我们告诉 *nix 系统,JavaScript 文件的解释器应该是 /usr/bin/env node
,它查找本地安装的 node
。
配置 bin
// package.json { "bin": { "reg": "./cli.js" } }
这样配置完成后,别人 npm install -g @chenng/recognition
的包,就可以直接通过命令行运行了:
reg --url=https://static.chenng.cn/imgs/test_img.png
link 本地开发
我们如何能够在本地可以使用 rec
命令呢?只需要把本项目 link 即可:
yarn link
核心逻辑
主要逻辑在 cli.js
和 recognize.js
中。这里有几个注意点:
- request 图片的时候要设置
encoding: null
,否则返回的是乱码 - 初次使用的时候需要下载训练集,需要花点时间
const Tesseract = require('tesseract.js'); const images = require('images'); const requset = require('request'); const fs = require('fs'); const { promisify } = require('util'); const chalk = require('chalk'); const writeFile = promisify(fs.writeFile); const rp = promisify(requset); class Recognize { constructor(url) { Recognize.downloadDir = `${__dirname}/dist/`; Recognize.downloadFile = `${__dirname}/dist/temp.png`; this.url = url; this.start(); } async start() { const data = await this.downloadImg(); await writeFile(Recognize.downloadFile, data); this.recognize(); const result = await Tesseract.recognize(Recognize.downloadFile, { lang: 'eng', tessedit_char_blacklist: 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ', }); console.log(` 识别成功! 识别结果为:${chalk.green(result.text)} `); } async downloadImg() { if (!fs.existsSync(Recognize.downloadDir)) { fs.mkdirSync(Recognize.downloadDir); console.log(`创建了 ${Recognize.downloadDir} 文件夹`); } const res = await rp({ url: this.url, method: 'GET', encoding: null, }); return res.body; } recognize() { // 放大图片,并覆盖源文件 images(Recognize.downloadFile) .size(400) .save(Recognize.downloadFile); } } module.exports = Recognize;
具体可以查看源码仓库: https://github.com/ringcrl/recognition
发布上线
# 新建代码仓库,git push # 登录到 npm npm adduser # 发包 npm publish --access public # 全局安装 npm install -g @chenng/recognition
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]