在搭建高吞吐量web应用这个议题上,NginX和Node.js可谓是天生一对。他们都是基于事件驱动模型而设计,可以轻易突破 Apache等传统web服务器的C10K瓶颈。预设的配置已经可以获得很高的并发,不过,要是大家想在廉价硬件上做到每秒数千以上的请求,还是有一些工作要做的。

这篇文章假定读者们使用NginX的HttpProxyModule来为上游的node.js服务器充当反向代理。我们将介绍Ubuntu 10.04以上系统sysctl的调优,以及node.js应用与NginX的调优。当然,如果大家用的是Debian系统,也能达到同样的目标,只不过调优的方法有所不同而已。

网络调优

如果不先对Nginx和Node.js的底层传输机制有所了解,并进行针对性优化,可能对两者再细致的调优也会徒劳无功。一般情况下,Nginx通过TCP socket来连接客户端与上游应用。

我们的系统对TCP有许多门限值与限制,通过内核参数来设定。这些参数的默认值往往是为一般的用途而定的,并不能满足web服务器所需的高流量、短生命的要求。

这里列出了调优TCP可供候选的一些参数。为使它们生效,可以将它们放在/etc/sysctl.conf文件里,或者放入一个新配置文件,比如 /etc/sysctl.d/99-tuning.conf,然后运行sysctl -p,让内核装载它们。我们是用sysctl-cookbook来干这个体力活。

需要注意的是,这里列出来的值是可以安全使用的,但还是建议大家研究一下每个参数的含义,以便根据自己的负荷、硬件和使用情况选择一个更加合适的值。

复制代码 代码如下:
<SPAN style="FONT-SIZE: 14px; COLOR: #009900; FONT-FAMILY: Microsoft YaHei"> net.ipv4.ip_local_port_range='1024 65000'
net.ipv4.tcp_tw_reuse='1'
net.ipv4.tcp_fin_timeout='15'
net.core.netdev_max_backlog='4096'
net.core.rmem_max='16777216'
net.core.somaxconn='4096'
net.core.wmem_max='16777216'
net.ipv4.tcp_max_syn_backlog='20480'
net.ipv4.tcp_max_tw_buckets='400000'
net.ipv4.tcp_no_metrics_save='1'
net.ipv4.tcp_rmem='4096 87380 16777216'
net.ipv4.tcp_syn_retries='2'
net.ipv4.tcp_synack_retries='2'
net.ipv4.tcp_wmem='4096 65536 16777216'
vm.min_free_kbytes='65536' </SPAN>



重点说明其中几个重要的。

net.ipv4.ip_local_port_range

为了替上游的应用服务下游的客户端,NginX必须打开两条TCP连接,一条连接客户端,一条连接应用。在服务器收到很多连接时,系统的可用端口将很快被耗尽。通过修改net.ipv4.ip_local_port_range参数,可以将可用端口的范围改大。如果在/var/log/syslog 中发现有这样的错误: “possible SYN flooding on port 80. Sending cookies”,即表明系统找不到可用端口。增大net.ipv4.ip_local_port_range参数可以减少这个错误。

net.ipv4.tcp_tw_reuse

当服务器需要在大量TCP连接之间切换时,会产生大量处于TIME_WAIT状态的连接。TIME_WAIT意味着连接本身是关闭的,但资源还没有释放。将net_ipv4_tcp_tw_reuse设置为1是让内核在安全时尽量回收连接,这比重新建立新连接要便宜得多。

net.ipv4.tcp_fin_timeout

这是处于TIME_WAIT状态的连接在回收前必须等待的最小时间。改小它可以加快回收。

如何检查连接状态

使用netstat:

netstat -tan | awk '{print $6}' | sort | uniq -c

或使用ss:

ss -s

NginX

ss -s
Total: 388 (kernel 541)
TCP: 47461 (estab 311, closed 47135, orphaned 4, synrecv 0, timewait 47135/0), ports 33938

Transport Total IP IPv6
* 541 - -
RAW 0 0 0
UDP 13 10 3
TCP 326 325 1
INET 339 335 4
FRAG 0 0 0

随着web服务器的负载逐渐升高,我们就会开始遭遇NginX的某些奇怪限制。连接被丢弃,内核不停报SYN flood。而这时,平均负荷和CPU使用率都很小,服务器明明是可以处理更多连接的状态,真令人沮丧。

经过调查,发现有非常多处于TIME_WAIT状态的连接。这是其中一个服务器的输出:

有47135个TIME_WAIT连接!而且,从ss可以看出,它们都是已经关闭的连接。这说明,服务器已经消耗了绝大部分可用端口,同时也暗示我们,服务器是为每个连接都分配了新端口。调优网络对这个问题有一点帮助,但是端口仍然不够用。

经过继续研究,我找到了一个关于上行连接keepalive指令的文档,它写道:

设置通往上游服务器的最大空闲保活连接数,这些连接会被保留在工作进程的缓存中。

有趣。理论上,这个设置是通过在缓存的连接上传递请求来尽可能减少连接的浪费。文档中还提到,我们应该把proxy_http_version设为"1.1",并清除"Connection"头部。经过进一步的研究,我发现这是一种很好的想法,因为HTTP/1.1相比HTTP1.0,大大优化了 TCP连接的使用率,而Nginx默认用的是HTTP/1.0。

按文档的建议修改后,我们的上行配置文件变成这样:
复制代码 代码如下:
upstream backend_nodejs {
server nodejs-3:5016 max_fails=0 fail_timeout=10s;
server nodejs-4:5016 max_fails=0 fail_timeout=10s;
server nodejs-5:5016 max_fails=0 fail_timeout=10s;
server nodejs-6:5016 max_fails=0 fail_timeout=10s;
keepalive 512;
}

我还按它的建议修改了server一节的proxy设置。同时,加了一个 p roxy_next_upstream来跳过故障的服务器,调整了客户端的 keepalive_timeout,并关闭访问日志。配置变成这样:
复制代码 代码如下:
server {
listen 80;
server_name fast.gosquared.com;

client_max_body_size 16M;
keepalive_timeout 10;

location / {
proxy_next_upstream error timeout http_500 http_502 http_503 http_504;
proxy_set_header Connection "";
proxy_http_version 1.1;
proxy_pass http://backend_nodejs;
}

access_log off;
error_log /dev/null crit;
}

采用新的配置后,我发现服务器们占用的socket 降低了90%。现在可以用少得多的连接来传输请求了。新的输出如下:

ss -s

Total: 558 (kernel 604)
TCP: 4675 (estab 485, closed 4183, orphaned 0, synrecv 0, timewait 4183/0), ports 2768

Transport Total IP IPv6
* 604 - -
RAW 0 0 0
UDP 13 10 3
TCP 492 491 1
INET 505 501 4

Node.js

得益于事件驱动式设计可以异步处理I/O,Node.js开箱即可处理大量的连接和请求。虽然有其它一些调优手段,但这篇文章将主要关注node.js的进程方面。

Node是单线程的,不会自动使用多核。也就是说,应用不能自动获得服务器的全部能力。

实现Node进程的集群化

我们可以修改应用,让它fork多个线程,在同一个端口上接收数据,从而实现负载的跨越多核。Node有一个cluster模块,提供了实现这个目标所必需的所有工具,但要将它们加入应用中还需要很多体力活。如果你用的是express,eBay有一个叫cluster2的模块可以用。

防止上下文切换

当运行多个进程时,应该确保每个CPU核同一时间只忙于一个进程。一般来说,如果CPU有N个核,我们应该生成N-1个应用进程。这样可以确保每个进程都能得到合理的时间片,而剩下的一个核留给内核调度程序运行其它任务。我们还要确保服务器上基本不执行除Node.js外的其它任务,防止出现CPU 的争用。

我们曾经犯过一个错误,在服务器上部署了两个node.js应用,然后每个应用都开了N-1个进程。结果,它们互相之间抢夺CPU,导致系统的负荷急升。虽然我们的服务器都是8核的机器,但仍然可以明显地感觉到由上下文切换引起的性能开销。上下文切换是指CPU为了执行其它任务而挂起当前任务的现象。在切换时,内核必须挂起当前进程的所有状态,然后装载和执行另一个进程。为了解决这个问题,我们减少了每个应用开启的进程数,让它们公平地分享 CPU,结果系统负荷就降了下来:

为高负载网络优化Nginx和Node.js的方法

请注意上图,看系统负荷(蓝线)是如何降到CPU核数(红线)以下的。在其它服务器上,我们也看到了同样的情况。既然总的工作量保持不变,那么上图中的性能改善只能归功于上下文切换的减少。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com