前言

由于MySQL的索引中最重要的数据结构就是B+树,所以前面我们先大概讲讲B+树的原理

B+ Tree 原理

1. 数据结构

B Tree 指的是 Balance Tree,也就是平衡树。平衡树是一颗查找树,并且所有叶子节点位于同一层。

B+ Tree 是基于 B Tree 和叶子节点顺序访问指针进行实现,它具有 B Tree 的平衡性,并且通过顺序访问指针来提高区间查询的性能。

在 B+ Tree 中,一个节点中的 key 从左到右非递减排列,如果某个指针的左右相邻 key 分别是 keyi 和 keyi+1,且不为 null,则该指针指向节点的所有 key 大于等于 keyi 且小于等于 keyi+1。

新手学习MySQL索引

2. 操作

进行查找操作时,首先在根节点进行二分查找,找到一个 key 所在的指针,然后递归地在指针所指向的节点进行查找。直到查找到叶子节点,然后在叶子节点上进行二分查找,找出 key 所对应的 data。

插入删除操作会破坏平衡树的平衡性,因此在插入删除操作之后,需要对树进行一个分裂、合并、旋转等操作来维护平衡性。

3. 与红黑树的比较

红黑树等平衡树也可以用来实现索引,但是文件系统及数据库系统普遍采用 B+ Tree 作为索引结构,主要有以下两个原因:

(一)更少的查找次数

平衡树查找操作的时间复杂度等于树高 h,而树高大致为 O(h)=O(logdN),其中 d 为每个节点的出度。

红黑树的出度为 2,而 B+ Tree 的出度一般都非常大,所以红黑树的树高 h 很明显比 B+ Tree 大非常多,查找的次数也就更多。

(二)利用磁盘预读特性       

为了减少磁盘 I/O,磁盘往往不是严格按需读取,而是每次都会预读。预读过程中,磁盘进行顺序读取,顺序读取不需要进行磁盘寻道,并且只需要很短的旋转时间,速度会非常快。       

操作系统一般将内存和磁盘分割成固态大小的块,每一块称为一页,内存与磁盘以页为单位交换数据。数据库系统将索引的一个节点的大小设置为页的大小,使得一次 I/O 就能完全载入一个节点。并且可以利用预读特性,相邻的节点也能够被预先载入。

MySQL 索引

索引是在存储引擎层实现的,而不是在服务器层实现的,所以不同存储引擎具有不同的索引类型和实现。

1. B+Tree 索引

是大多数 MySQL 存储引擎的默认索引类型。

因为不再需要进行全表扫描,只需要对树进行搜索即可,所以查找速度快很多。

除了用于查找,还可以用于排序和分组。

可以指定多个列作为索引列,多个索引列共同组成键。

适用于全键值、键值范围和键前缀查找,其中键前缀查找只适用于最左前缀查找。如果不是按照索引列的顺序进行查找,则无法使用索引。

InnoDB 的 B+Tree 索引分为主索引和辅助索引。主索引的叶子节点 data 域记录着完整的数据记录,这种索引方式被称为聚簇索引。因为无法把数据行存放在两个不同的地方,所以一个表只能有一个聚簇索引。

新手学习MySQL索引

辅助索引的叶子节点的 data 域记录着主键的值,因此在使用辅助索引进行查找时,需要先查找到主键值,然后再到主索引中进行查找。

新手学习MySQL索引

2. 哈希索引

哈希索引能以 O(1) 时间进行查找,但是失去了有序性:无法用于排序与分组;只支持精确查找,无法用于部分查找和范围查找。InnoDB 存储引擎有一个特殊的功能叫“自适应哈希索引”,当某个索引值被使用的非常频繁时,会在 B+Tree 索引之上再创建一个哈希索引,这样就让 B+Tree 索引具有哈希索引的一些优点,比如快速的哈希查找。

3. 全文索引

MyISAM 存储引擎支持全文索引,用于查找文本中的关键词,而不是直接比较是否相等。

查找条件使用 MATCH AGAINST,而不是普通的 WHERE。

全文索引使用倒排索引实现,它记录着关键词到其所在文档的映射。

InnoDB 存储引擎在 MySQL 5.6.4 版本中也开始支持全文索引。

4. 空间数据索引

MyISAM 存储引擎支持空间数据索引(R-Tree),可以用于地理数据存储。空间数据索引会从所有维度来索引数据,可以有效地使用任意维度来进行组合查询。必须使用 GIS 相关的函数来维护数据。

索引优化

1. 独立的列

在进行查询时,索引列不能是表达式的一部分,也不能是函数的参数,否则无法使用索引。例如下面的查询不能使用 actor_id 列的索引:

SELECT actor_id FROM sakila.actor WHERE actor_id + 1 = 5;

2. 多列索引

在需要使用多个列作为条件进行查询时,使用多列索引比使用多个单列索引性能更好。例如下面的语句中,最好把 actor_id 和 film_id 设置为多列索引。

SELECT film_id, actor_ id FROM sakila.film_actor WHERE actor_id = 1 AND film_id = 1;

3. 索引列的顺序

让选择性最强的索引列放在前面。

索引的选择性是指:不重复的索引值和记录总数的比值。最大值为 1,此时每个记录都有唯一的索引与其对应。选择性越高,查询效率也越高。

例如下面显示的结果中 customer_id 的选择性比 staff_id 更高,因此最好把 customer_id 列放在多列索引的前面。

SELECT COUNT(DISTINCT staff_id)/COUNT(*) AS staff_id_selectivity,
COUNT(DISTINCT customer_id)/COUNT(*) AS customer_id_selectivity,
COUNT(*)
FROM payment;

staff_id_selectivity: 0.0001
customer_id_selectivity: 0.0373
 COUNT(*): 16049

4. 前缀索引

对于 BLOB、TEXT 和 VARCHAR 类型的列,必须使用前缀索引,只索引开始的部分字符。

对于前缀长度的选取需要根据索引选择性来确定。

5. 覆盖索引

索引包含所有需要查询的字段的值。

具有以下优点:

  • 索引通常远小于数据行的大小,只读取索引能大大减少数据访问量。
  • 一些存储引擎(例如 MyISAM)在内存中只缓存索引,而数据依赖于操作系统来缓存。因此,只访问索引可以不使用系统调用(通常比较费时)。
  • 对于 InnoDB 引擎,若辅助索引能够覆盖查询,则无需访问主索引。

6. 最左前缀原则

顾名思义是最左优先,以最左边的为起点任何连续的索引都能匹配上

联合索引本质:

当创建(a,b,c)联合索引时,相当于创建了(a)单列索引,(a,b)联合索引以及(a,b,c)联合索引 想要索引生效的话,只能使用 a和a,b和a,b,c三种组合。

索引的优点

  • 大大减少了服务器需要扫描的数据行数。
  • 帮助服务器避免进行排序和分组,以及避免创建临时表(B+Tree 索引是有序的,可以用于 ORDER BY 和 GROUP BY 操作。临时表主要是在排序和分组过程中创建,因为不需要排序和分组,也就不需要创建临时表)。
  • 将随机 I/O 变为顺序 I/O(B+Tree 索引是有序的,会将相邻的数据都存储在一起)。

索引的使用条件

  • 对于非常小的表、大部分情况下简单的全表扫描比建立索引更高效;
  • 对于中到大型的表,索引就非常有效;
  • 但是对于特大型的表,建立和维护索引的代价将会随之增长。这种情况下,需要用到一种技术可以直接区分出需要查询的一组数据,而不是一条记录一条记录地匹配,例如可以使用分区技术。

小结

索引是MySQL中一个很重要的功能,日常开发中如果能用好索引,能大幅度提高SQL语句的执行性能,所以了解其中的原理也是十分必要的。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?