这篇文章将给大家介绍如何使用 explain 来分析一条 sql 。
网上其实已经有非常多的文章都很详细的介绍了 explain 的使用,这篇文章将实例和原理结合起来,尽量让你有更好的理解,相信我,认真看完你应该会有特别的收获。
explain 翻译过来就是解释的意思, 在 mysql 里被称作执行计划,即可以通过该命令看出 mysql 在经过优化器分析后决定要如何执行该条 sql 。
说到优化器,再多说一句,mysql 内置了一个强大的优化器,优化器的主要任务就是把你写的 sql 再给优化一下,尽可能以更低成本去执行,比如扫描更少的行数,避免排序等。执行一条sql语句都经历了什么? 我在前面的文章中有介绍过优化器相关的。
你可能会问,一般在什么时候会要用 explain 呢,大多数情况下都是从 mysql 的慢查询日志中揪出来一些查询效率比较慢的 sql 来使用 explain 分析,也有的是就是在对 mysql 进行优化的时候,比如添加索引,通过 explain 来分析添加的索引能否被命中,还有的就是在业务开发的时候,在满足需求的情况下,你可能需要通过 explain 来选择一个更高效的 sql。
那么 explain 该怎么用呢,很简单,直接在 sql 前面加上 explain 就行了,如下所示。
mysql> explain select * from t; +----+-------------+-------+------+---------------+------+---------+------+--------+-------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+--------+-------+ | 1 | SIMPLE | t | ALL | NULL | NULL | NULL | NULL | 100332 | NULL | +----+-------------+-------+------+---------------+------+---------+------+--------+-------+ 1 row in set (0.04 sec)
可以看到,explain 会返回约 10 个字段,不同版本返回的字段有些许差异,每个字段都代表着具体的意义,这篇文章我不打算把每个字段都详细的介绍一遍,东西比较多,怕你也不容易记住,不如先把几个重要的字段好好理解了。
其中 type、key、rows、Extra 这几个字段我认为是比较重要的,我们接下来通过具体的实例来帮你更好的理解这几个字段的含义。
首先有必要简单介绍下这几个字段的字面意思。
type 表示 mysql 访问数据的方式,常见的有全表扫描(all)、遍历索引(index)、区间查询(range)、常量或等值查询(ref、eq_ref)、主键等值查询(const)、当表中只有一条记录时(system)。下面是效率从最好到最差的一个排序。
system > const > eq_ref > ref > range > index > all
key 表示查询过程实际会用到的索引名称。
rows 表示查询过程中可能需要扫描的行数,这个数据不一定准确,是mysql 抽样统计的一个数据。
Extra 表示一些额外的信息,通常会显示是否使用了索引,是否需要排序,是否会用到临时表等。
好了,接下来正式开始实例分析。
还是沿用前面文章中创建的存储引擎创建一个测试表,我们这里插入 10 w 条测试数据,表结构如下:
CREATE TABLE `t` ( `id` int(11) NOT NULL, `a` int(11) DEFAULT NULL, `b` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB;
然后看下面这条查询语句,注意这个表目前只有一个主键索引,还没有创建普通索引。
mysql> alter table t add index a_index(a); Query OK, 0 rows affected (0.19 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> alter table t add index b_index(b); Query OK, 0 rows affected (0.20 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> show index from t; +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | t | 0 | PRIMARY | 1 | id | A | 100332 | NULL | NULL | | BTREE | | | | t | 1 | a_index | 1 | a | A | 100332 | NULL | NULL | YES | BTREE | | | | t | 1 | b_index | 1 | b | A | 100332 | NULL | NULL | YES | BTREE | | | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 3 rows in set (0.00 sec)
其中 type 值为 ALL,表示全表扫描了,大家注意看到 rows 这个字段显示有 100332 条,实际上我们一共才 10w 条数据,所以这个字段只是 mysql 的一个预估,并不一定准确。这种全表扫描的效率非常低,是需要重点被优化的。
接下来我们分别给字段 a 和 b 添加普通索引,然后再看下添加索引后的几条 sql 。
mysql> alter table t add index a_index(a); Query OK, 0 rows affected (0.19 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> alter table t add index b_index(b); Query OK, 0 rows affected (0.20 sec) Records: 0 Duplicates: 0 Warnings: 0 mysql> show index from t; +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | t | 0 | PRIMARY | 1 | id | A | 100332 | NULL | NULL | | BTREE | | | | t | 1 | a_index | 1 | a | A | 100332 | NULL | NULL | YES | BTREE | | | | t | 1 | b_index | 1 | b | A | 100332 | NULL | NULL | YES | BTREE | | | +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 3 rows in set (0.00 sec)
mysql> explain select * from t where a > 1000; +----+-------------+-------+------+---------------+------+---------+------+--------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+------+---------------+------+---------+------+--------+-------------+ | 1 | SIMPLE | t | ALL | a_index | NULL | NULL | NULL | 100332 | Using where | +----+-------------+-------+------+---------------+------+---------+------+--------+-------------+ 1 row in set (0.00 sec)
上面这条 sql 看起来是不是有点疑惑呢,type 竟然显示刚刚不是给字段 a 添加索引了么,而且 possible_keys 也显示了有 a_index 可用,但是 key 显示 null,表示 mysql 实际上并不会使用 a 索引,这是为啥?
这里是因为 select * 的话还需要回到主键索引上查找 b 字段,这个过程叫回表,这条语句会筛选出 9w 条满足条件的数据,也就是说这 9w 条数据都需要回表操作,全表扫描都才 10w 条数据,所以在 mysql 的优化器看来还不如直接全表扫描得了,至少还免去了回表过程了。
当然也不是说只要有回表操作就不会命中索引,用不用索引关键还在于 mysql 认为哪种查询代价更低,我们把上面的 sql 中 where 条件再稍微改造一下。
mysql> explain select * from t where a > 99000; +----+-------------+-------+-------+---------------+---------+---------+------+------+-----------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------+---------+---------+------+------+-----------------------+ | 1 | SIMPLE | t | range | a_index | a_index | 5 | NULL | 999 | Using index condition | +----+-------------+-------+-------+---------------+---------+---------+------+------+-----------------------+ 1 row in set (0.00 sec)
这回 type 值为 range 了,key 为 a_index ,表示命中了 a 索引,是一个不错的选择,是因为满足这条 sql 条件的只有 1000 条数据,mysql 认为 1000 条数据就算回表也要比全表扫描的代价低,所以说 mysql 其实是个很聪明的家伙。
我们还可以看到 Extra 字段中值为 Using index condition,这个意思是指用到了索引,但是需要回表,再看下面这个语句。
mysql> explain select a from t where a > 99000; +----+-------------+-------+-------+---------------+---------+---------+------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------+---------+---------+------+------+--------------------------+ | 1 | SIMPLE | t | range | a_index | a_index | 5 | NULL | 999 | Using where; Using index | +----+-------------+-------+-------+---------------+---------+---------+------+------+--------------------------+ 1 row in set (0.00 sec)
这个 Extra 中的值为 Using where; Using index ,表示查询用到了索引,且要查询的字段在索引中就能拿到,不需要回表,显然这种效率比上面的要高,所以不要轻易写 select * ,只查询业务需要的字段即可,这样可以尽可能避免回表。
再来看一个需要排序的。
mysql> explain select a from t where a > 99000 order by b; +----+-------------+-------+-------+---------------+---------+---------+------+------+---------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+---------------+---------+---------+------+------+---------------------------------------+ | 1 | SIMPLE | t | range | a_index | a_index | 5 | NULL | 999 | Using index condition; Using filesort | +----+-------------+-------+-------+---------------+---------+---------+------+------+---------------------------------------+ 1 row in set (0.00 sec)
这个 Extra 中返回了一个 Using filesort,意味着需要排序,这种是需要重点优化的的,也就是说查到数据后,还需要 mysql 在内存中对其进行排序,你要知道索引本身就是有序的,所以一般来讲要尽量利用索引的有序性,比如像下面这样写。
mysql> explain select a from t where a > 99990 order by a; +----+-------------+-------+-------+------------------+---------+---------+------+------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+------------------+---------+---------+------+------+--------------------------+ | 1 | SIMPLE | t | range | a_index,ab_index | a_index | 5 | NULL | 10 | Using where; Using index | +----+-------------+-------+-------+------------------+---------+---------+------+------+--------------------------+ 1 row in set (0.00 sec)
我们再创建一个复合索引看看。
mysql> alter table t add index ab_index(a,b); Query OK, 0 rows affected (0.19 sec) Records: 0 Duplicates: 0 Warnings: 0
mysql> explain select * from t where a > 1000; +----+-------------+-------+-------+------------------+----------+---------+------+-------+--------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+------------------+----------+---------+------+-------+--------------------------+ | 1 | SIMPLE | t | range | a_index,ab_index | ab_index | 5 | NULL | 50166 | Using where; Using index | +----+-------------+-------+-------+------------------+----------+---------+------+-------+--------------------------+ 1 row in set (0.00 sec)
这条 sql 刚刚在上面也有讲到过,在没有创建复合索引的时候,是走的全表扫描,现在其实是利用了覆盖索引,同样是免去了回表过程,即在 (ab_index) 索引上就能找出要查询的字段。
这篇文章通过几个实例介绍了如何使用 explain 分析一条 sql 的执行计划,也提到了一些常见的索引优化,事实上还有更多的可能性,你也可以自己去写一个 sql ,然后使用 explain 分析,看看有哪些是可以被优化的。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]