本文所述实例为Python用3行代码实现解一元一次方程,代码简洁高效,具体用法如下:

> solve("x - 2*x + 5*x - 46*(235-24) = x + 2")
3236.0

功能代码如下:

def solve(eq,var='x'):
  eq1 = eq.replace("=","-(")+")"
  c = eval(eq1,{var:1j})
  return -c.real/c.imag

下面就来解读下代码吧。

首先是第一行,它将等式进行了变形,生成了一个结果为0的算式“x - 2*x + 5*x - 46*(235-24) -( x + 2)”。
第二行用eval来执行这个算式,并将x = 1j代入算式,结果是-9708+3j。
注意x = 1j,所以这个方程就化简为“-9708+3x = 0”了,只要将-(-9708) / 3就能得到x了。
而-9708是这个复数的实部,3是这个复数的虚部,于是结果变成了“-c.real/c.imag”。
因此很显然,这个函数是不能解复数方程的。
顺带一提,Python 2.x的/运算会使用整数除法,导致小数部分丢失,所以要获得正确结果就应该使用Python 3.x。

希望本文所述实例对大家学习Python能有所帮助。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com