考虑这种情况:如果一个线程遇到锁嵌套的情况该怎么办,这个嵌套是指当我一个线程在获取临界资源时,又需要再次获取。
根据这种情况,代码如下:
复制代码 代码如下:
'''
Created on 2012-9-8
@author: walfred
@module: thread.ThreadTest6
'''
import threading
import time
counter = 0
mutex = threading.Lock()
class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
global counter, mutex
time.sleep(1);
if mutex.acquire():
counter += 1
print "I am %s, set counter:%s" % (self.name, counter)
if mutex.acquire():
counter += 1
print "I am %s, set counter:%s" % (self.name, counter)
mutex.release()
mutex.release()
if __name__ == "__main__":
for i in range(0, 200):
my_thread = MyThread()
my_thread.start()
这种情况的代码运行情况如下:
复制代码 代码如下:
I am Thread-1, set counter:1
之后就直接挂起了,这种情况形成了最简单的死锁。
那有没有一种情况可以在某一个线程使用互斥锁访问某一个竞争资源时,可以再次获取呢?在Python中为了支持在同一线程中多次请求同一资源,python提供了“可重入锁”:threading.RLock。这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁:
代码只需将上述的:
复制代码 代码如下:
mutex = threading.Lock()
替换成:
复制代码 代码如下:
mutex = threading.RLock()
即可。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]