通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器(Generator)。
简单生成器
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:
复制代码 代码如下:
> L = [x * x for x in range(10)]
> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
> g = (x * x for x in range(10))
> g
<generator object <genexpr> at 0x104feab40>
创建L和g的区别仅在于最外层的[]和(),L是一个list,而g是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过generator的next()方法:
复制代码 代码如下:
> g.next()
0
> g.next()
1
> g.next()
4
> g.next()
9
> g.next()
16
> g.next()
25
> g.next()
36
> g.next()
49
> g.next()
64
> g.next()
81
> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
我们讲过,generator保存的是算法,每次调用next(),就计算出下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。
当然,上面这种不断调用next()方法实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:
复制代码 代码如下:
> g = (x * x for x in range(10))
> for n in g:
... print n
...
0
1
4
9
16
25
36
49
64
81
所以,我们创建了一个generator后,基本上永远不会调用next()方法,而是通过for循环来迭代它。
带yield 语句的生成器
仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print b改为yield b就可以了:
复制代码 代码如下:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:
复制代码 代码如下:
> fib(6)
<generator object fib at 0x104feaaa0>
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
复制代码 代码如下:
> def odd():
... print 'step 1'
... yield 1
... print 'step 2'
... yield 3
... print 'step 3'
... yield 5
...
> o = odd()
> o.next()
step 1
1
> o.next()
step 2
3
> o.next()
step 3
5
> o.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next()就报错。
回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用next()来调用它,而是直接使用for循环来迭代:
复制代码 代码如下:
> for n in fib(6):
... print n
...
1
1
2
3
5
8
加强的生成器
在 python2.5 中,一些加强特性加入到生成器中,所以除了 next()来获得下个生成的值,用户可以将值回送给生成器[send()],在生成器中抛出异常,以及要求生成器退出[close()]
复制代码 代码如下:
def gen(x):
count = x
while True:
val = (yield count)
if val is not None:
count = val
else:
count += 1
f = gen(5)
print f.next()
print f.next()
print f.next()
print '===================='
print f.send(9)#发送数字9给生成器
print f.next()
print f.next()
输出
复制代码 代码如下:
5
6
7
====================
9
10
11
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]