引用是指保存的值为对象的地址。在 Python 语言中,一个变量保存的值除了基本类型保存的是值外,其它都是引用,因此对于它们的使用就需要小心一些。下面举个例子:
问题描述:已知一个列表,求生成一个新的列表,列表元素是原列表的复制
复制代码 代码如下:
a=[1,2]
b=a
这种做法其实并未真正生成一个新的列表,b指向的仍然是a所指向的对象。这样,如果对a或b的元素进行修改,a,b的值同时发生变化。
解决的方法为:
复制代码 代码如下:
a=[1,2]
b=a[:]
这样修改a对b没有影响。修改b对a没有影响。
但 这种方法只适用于简单列表,也就是列表中的元素都是基本类型,如果列表元素还存在列表的话,这种方法就不适用了。原因就是,象a[:]这种处理,只是将列 表元素的值生成一个新的列表,如果列表元素也是一个列表,如:a=[1,[2]],那么这种复制对于元素[2]的处理只是复制[2]的引用,而并未生成 [2]的一个新的列表复制。为了证明这一点,测试步骤如下:
复制代码 代码如下:
> a=[1,[2]]
> b=a[:]
> b
[1, [2]]
> a[1].append(3)
> a
[1, [2, 3]]
> b
[1, [2, 3]]
可见,对a的修改影响到了b。如果解决这一问题,可以使用copy模块中的deepcopy函数。修改测试如下:
复制代码 代码如下:
> import copy
> a=[1,[2]]
> b=copy.deepcopy(a)
> b
[1, [2]]
> a[1].append(3)
> a
[1, [2, 3]]
> b
[1, [2]]
有时候知道这一点是非常重要的,因为可能你的确需要一个新的列表,并且对这个新的列表进行操作,同时不想影响原来的列表。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]