几周前, Elastic Beanstalk声明在AWS云中配置和管理Docker容器。在本文中,我们通过一个简单的注册表单页面应用去理解Docker部署过程,该表单使用Elastic Beanstalk Python环境。
关于注册表单应用
几个月之前,我们就已经开发完这个应用并且发表在博客上。有4部分视频和一篇文章“Using DynamoDB and SNS with Elastic Beanstalk in any Supported AWS Region”。今天,我们将在这部分内容之上进一步的开发和讨论我们怎样部署在在Docker和Elastic Beanstalk环境中。本文将分成4个部分讲解。
参考资源
原始的Python应用(非Docker化)源代码托管在GitHub上(master版本),网址为https://github.com/awslabs/eb-py-flask-signup/tree/docker。Docker化的版本在docker版本中,网址为:https://github.com/awslabs/eb-py-flask-signup/tree/docker
如果你喜欢代码和不同版本间的比对,你可利用GitHub对比功能查看两个版本的区别。网址为https://github.com/awslabs/eb-py-flask-signup/compare/master...docker。你也可以查看Docker化后添加的每个文件或者每行代码。
Docker化阶段1:添加Dockerfile文件
首先从GitHub上克隆源代码:
$> git clone git@github.com:awslabs/eb-py-flask-signup.git $> cd eb-py-flask-signup $> git checkout master
通过查看目录内容,知道这是一个简单的Python应用,使用Flask框架,Boto和一些其他的依赖(在requirements.txt中声明了该依赖),其中Boto用于DynamoDB和SNS的互动。
足够简单,以至于我们只需创建一个Dockerfile,构建一个适用于运行该应用的镜像。Dockerfile和其他应用源均放在目录中(即,和requirements.txt, application.py等等放在一块)。
FROM ubuntu:12.10 # Install Python Setuptools RUN apt-get install -y python-setuptools # Install pip RUN easy_install pip # Add and install Python modules ADD requirements.txt /src/requirements.txt RUN cd /src; pip install -r requirements.txt # Bundle app source ADD . /src # Expose EXPOSE 5000 # Run CMD ["python", "/src/application.py"]
Docker化阶段 2 :在本地测试
虽然这个应用程序需要一个DynamoDB表和SNS主题来完成全部功能,不过我可以但没有测试它们:
首先, 构建 Docker 镜像:
$> docker build -t eb-py-sample .
最后 (直接到可以使用后!),通过构建好的image运行一个container (映射 container 的5000端口到主机的8080端口, 并且按照下面的代码设置一些环境变量):
$> docker run -d -e APP_CONFIG=application.config.example -e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID -e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY -p 8080:5000 eb-py-sample
在 OS X上,我打开 http://localhost:8080链接,下图显示的就是我的一个应用程序!
复制代码 代码如下: 边栏:我们使用-e选项来传递一些选项:
- APP_CONFIG: 这个程序使用这个选项加载(指向)它的配置文件. 默认我们指定一个默认的配置文件。 你可以创建一个 DynamoDB 表和SNS 主题并且将他们添加到这个配置文件中,以使你的应用程序在本地开发的时候可以更完美的工作。
- AWS_ACCESS_KEY_ID 和 AWS_SECRET_ACCESS_KEY: 这个应用程序使用 Boto 来连接 DynamoDB 和SNS, 并且 Boto 使用这些环境变量来认证请求以上服务。这些设置仅仅是为了本地开发。 当我们向 Elastic Beanstalk 部署时将使用统一身份和访问控制方案(IAM) 角色(Roles)。
Docker 化阶段 3: 修改 .ebextensions
我们的应用程序拥有一个特殊的文件夹 .ebextensions,里面有个 setup.config 文件。我们使用这个文件通知来 Elastic Beanstalk 创建我们程序所需要的 DynamoDB 表和 SNS 主题, 同时他会创建一个配置文件 /var/app/app.config ,这个文件包含了我们刚才创建的 DynamoDB 表和 SNS 主题的名字。
这个文件中还有一些特殊的地方是他拥有特殊的在 Elastic Beanstalk(相对于 Docker)中的 Python的环境类型(python版本?) ,我们需要把他们移除掉:
修改 files 的成员,并且移除掉 owner 和 group 键,使他看起来像下面的这些:
files: "/var/app/app.config": mode: "000444" content: | AWS_REGION = '`{ "Ref" : "AWS::Region"}`' STARTUP_SIGNUP_TABLE = '`{ "Ref" : "StartupSignupsTable"}`' NEW_SIGNUP_TOPIC = '`{ "Ref" : "NewSignupTopic"}`'
修改 option_settings ,删除静态文件映射。使他看起来像下面的这些:
option_settings: "aws:elasticbeanstalk:customoption": "AlarmEmail" : "nobody@amazon.com" "aws:elasticbeanstalk:application:environment": "APP_CONFIG": "/var/app/app.config" "FLASK_DEBUG": "false" "THEME": "flatly"
检查一下setup.config文件,确认前面的所有变化是否正确,或者可以参考托管在在GitHub上的setup.config。
Docker化阶段4: 部署到Elastic Beanstalk
我已经建立并测试了我的本地容器,移除了一些.ebextensions,它是特定的Elastic Beanstalk Python环境,我已经信心满满地准备部署它了!
我创建了一个文件,名字叫做Dockerrun.aws.json,与此类似,我创建了Dockerfile。这个文件将会告诉Elastic Beanstalk 怎么去运行Docker容器并且它看起来像是这样的(这个文件的详细信息,请参阅下方)。
{ "AWSEBDockerrunVersion": "1", "Volumes": [ { "ContainerDirectory": "/var/app", "HostDirectory": "/var/app" } ], "Logging": "/var/eb_log" }
关于Dockerrun.aws.json
Volumes成员将会在EC2上映射/var/app实例到容器上的/var/app。Docker容器通过访问app.config文件并通过创建.ebextensions/setup.config得以让app在容器上运行。Logging成员告诉Elastic Beanstalk我们的Docker app将会记录日志到/var/eb_log到容器中。在控制台里,无论什么时候你点击Snapshot Logs或者如果你启用自动日志轮转,Beanstalk将会自动推送日志/var/eb_log到这个目录。
我将提交我的修改,并且使用 git archive 来生成一个zip文件以便部署到Elastic Beanstalk上(你可以使用zip工具、Finder或Windows 资源管理器来打包):
$> git add Docker* && git commit -am "Dockerized" $> git archive --format=zip HEAD > eb-py-flask-signup.zip
之后,我通过 Elastic Beanstalk Management Console 来部署生成后的zip包
当我的环境通过之后,我可以访问它,确保它可以正常工作:
我还保存了环境日志的快照:
由于我之前往Dockerrun.aws.json文件中添加了Logging 成员,所以,容器中输出到/var/eb_log中的日志可以被定向到S3,并且我可以在浏览器中访问它们:
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]