JSON进阶
Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:
import json class Student(object): def __init__(self, name, age, score): self.name = name self.age = age self.score = score s = Student('Bob', 20, 88) print(json.dumps(s))
运行代码,毫不留情地得到一个TypeError:
Traceback (most recent call last): ... TypeError: <__main__.Student object at 0x10aabef50> is not JSON serializable
错误的原因是Student对象不是一个可序列化为JSON的对象。
如果连class的实例对象都无法序列化为JSON,这肯定不合理!
别急,我们仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:
https://docs.python.org/2/library/json.html#json.dumps
这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。
可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:
def student2dict(std): return { 'name': std.name, 'age': std.age, 'score': std.score } print(json.dumps(s, default=student2dict))
这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON。
不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict:
print(json.dumps(s, default=lambda obj: obj.__dict__))
因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。
同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:
def dict2student(d): return Student(d['name'], d['age'], d['score']) json_str = '{"age": 20, "score": 88, "name": "Bob"}' print(json.loads(json_str, object_hook=dict2student))
运行结果如下:
<__main__.Student object at 0x10cd3c190>
打印出的是反序列化的Student实例对象。
小结
Python语言特定的序列化模块是pickle,但如果要把序列化搞得更通用、更符合Web标准,就可以使用json模块。
json模块的dumps()和loads()函数是定义得非常好的接口的典范。当我们使用时,只需要传入一个必须的参数。但是,当默认的序列化或反序列机制不满足我们的要求时,我们又可以传入更多的参数来定制序列化或反序列化的规则,既做到了接口简单易用,又做到了充分的扩展性和灵活性。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]