DesktopNexus 是我最喜爱的一个壁纸下载网站,上面有许多高质量的壁纸,几乎每天必上, 每月也必会坚持分享我这个月来收集的壁纸

但是 DesktopNexus 壁纸的下载很麻烦,而且因为壁纸会通过浏览器检测你当前分辨率来展示 合适你当前分辨率的壁纸,再加上是国外的网站,速度上很不乐观。

于是我写了个脚本,检测输入的页面中壁纸页面的链接,然后批量下载到指定文件夹中。

脚本使用 python 写的,所以需要机器上安装有 python 。
用法:

$ python desktop_nexus.py -p http://www.desktopnexus.com/tag/cat/ -s 1280x800 -o wallpapers

    -p 包含 DesktopNexus 壁纸链接的页面,比如我的壁纸分享
    -s 壁纸尺寸,可选,缺省为 1440x900
    -o 壁纸输出的文件夹,可选,缺省为当前目录下的 wallpapers, 如果不存在会自动创建

代码:

#-*- coding: utf-8 -*-
from argparse import ArgumentParser

import os, re, sys
import urllib2, cookielib, urlparse

RE_WALLPAPER = r'http\:\/\/[^\/\.]+\.desktopnexus\.com\/wallpaper\/\d+\/'
CHUNK_SIZE = 1024 * 3

class DesktopNexus:
  def __init__(self, page=None, size=None, output_dir=None):
    self.page = page
    self.size = size
    self.output_dir = output_dir

  def start(self):
    print 'Making output directory:', self.output_dir
    if not os.path.exists(self.output_dir):
      os.makedirs(self.output_dir)

    # Setup cookie
    cookie = cookielib.CookieJar()
    processer = urllib2.HTTPCookieProcessor(cookie)
    opener = urllib2.build_opener(processer)
    urllib2.install_opener(opener)

    self._read_page()

  def _get_pic_info(self, url):
    pic_id = url.split('/')[-2]
    html = urllib2.urlopen(url).read()
    pattern = r'<a href=\"\/get\/%s\/\"' % pic_id
    match = re.search(pattern, html, flags=re.I|re.M|re.S)
    if match:
      return {'id': pic_id,
          'token': match.group('token'),
          'size': self.size}
    else:
      raise Exception('Cound not find wallpaper')

  def _get_pic_file(self, pic_info):
    redirect_url = 'http://www.desktopnexus.com/dl/inline/%(id)s/%(size)s/%(token)s' % pic_info

    request = urllib2.urlopen(redirect_url)
    return request.geturl()

  def _download_pic(self, url):
    pic_info = self._get_pic_info(url)
    pic_file = self._get_pic_file(pic_info)
    filename = os.path.split(urlparse.urlparse(pic_file).path)[-1]
    filename = os.path.join(self.output_dir, filename)
    with open(filename, 'wb') as output:
      resp = urllib2.urlopen(pic_file)
      total_size = int(resp.info().get('Content-Length'))
      saved_size = 0.0
      while saved_size != total_size:
        chunk = resp.read(CHUNK_SIZE)
        saved_size += len(chunk)
        output.write(chunk)
        self._print_progress('Saving file: %s' % filename,             saved_size / total_size * 100)

  def _print_progress(self, msg, progress):
    sys.stdout.write('%-71s%3d%%\r'         % (len(msg) <= 70 and msg or msg[:67] + '...', progress))
    sys.stdout.flush()
    if progress >= 100:
      sys.stdout.write('\n')

  def _read_page(self):
    try:
      print 'Fetching content:', self.page
      html = urllib2.urlopen(self.page).read()
      links = set(re.findall(RE_WALLPAPER, html, re.M|re.I))
      count = len(links)

      print 'Downloading wallpapers:'
      for i, link in enumerate(links):
        print '[%d/%d]: %s' % (i + 1, count, link)
        try:
          self._download_pic(link)
        except Exception as e:
          print 'Error downloading wallpaper.', e.message
    except Exception as e:
      print 'Error fetching content.', e

if __name__ == '__main__':
  # Setup argparser
  parser = ArgumentParser('python desktop_nexus.py')
  parser.add_argument('-p', '--page', dest='page', required=True,       help='specific a page that includes wallpaper list')
  parser.add_argument('-s', '--size', dest='size', default='1440x900',       help='specific the wallpaper size, default to 1440x900')
  parser.add_argument('-o', '--output', dest='output_dir', default='wallpapers',       help='specific the output directory, default to "wallpapers"')
  args = parser.parse_args()
  dn = DesktopNexus(**args.__dict__)
  dn.start()


华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。