yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型(还不是很了解是如何简化的)。
yield是一个表达式,是有返回值的.
当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停,见第一个例子:
例1:
> def mygenerator(): ... print 'start...' ... yield 5 ... > mygenerator() //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停 <generator object mygenerator at 0xb762502c> > mygenerator().next() //调用next()即可让函数运行. start... 5 >
如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:
例2:
> def mygenerator(): ... print 'start...' ... yield 5 ... > mygenerator() //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停 <generator object mygenerator at 0xb762502c> > mygenerator().next() //调用next()即可让函数运行. start... 5 >
为什么yield 5会输出5,yield 23会输出23"htmlcode">
> def fun(): ... print 'start...' ... m = yield 5 ... print m ... print 'middle...' ... d = yield 12 ... print d ... print 'end...' ... > m = fun() //创建一个对象 > m.next() //会使函数执行到下一个yield前 start... 5 > m.send('message') //利用send()传递值 message //send()传递进来的 middle... 12 > m.next() None //可见next()返回值为空 end... Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
在multiprocess中的使用
python在处理数据的时候,memory-heavy 的数据往往会导致程序没办反运行或者运行期间服务器其他程序效率受到影响。这种情况往往会把数据集合变为通过genertor来遍历。
但同时如我们所知,generoter看似只能被单进程消费,这样效率很低。
generator 可以被pool.map消费。
看一下pool.py的源码。
for i, task in enumerate(taskseq): ... try: put(task) except IOError: debug('could not put task on queue') break
实际是先将generator全部消费掉放到queue中。然后通过map来并行。这样是解决了使用map来并行。
但是依然没有解决占用内存的问题。这里有两步占用内存。
- 第一步是全部消费掉的generator。
- 第二步并行运算全部data。
解决第一个问题,通过部分消费generator来达到。
解决第二个问题,可以通过imap来达到.
示例代码如下:
import multiprocessing as mp import itertools import time def g(): for el in xrange(50): print el yield el import os def f(x): time.sleep(1) print str(os.getpid()) +" "+ str(x) return x * x if __name__ == '__main__': pool = mp.Pool(processes=4) # start 4 worker processes go = g() result = [] N = 11 while True: g2 = pool.imap(f, itertools.islice(go, N)) if g2: for i in g2: result.append(i) time.sleep(1) else: break print(result)
ps: 使用注意事项。在produce数据的时候,尽量少做操作,应为即使是map也是单线程的来消费数据。所以尽量把操作放到map中作。这样才能更好的利用多进程提高效率。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]