前言

最小二乘法Least Square Method,做为分类回归算法的基础,有着悠久的历史(由马里·勒让德于1806年提出)。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

下面这篇文章主要跟大家介绍了关于python中matplotlib实现最小二乘法拟合的相关内容,下面话不多说,来一起看看详细的介绍:

一、最小二乘法拟合直线

生成样本点

首先,我们在直线 y = 3 + 5x 附近生成服从正态分布的随机点,作为拟合直线的样本点。

import numpy as np 
import matplotlib.pyplot as plt

# 在直线 y = 3 + 5x 附近生成随机点
X = np.arange(0, 5, 0.1) 
Z = [3 + 5 * x for x in X] 
Y = [np.random.normal(z, 0.5) for z in Z]

plt.plot(X, Y, 'ro') 
plt.show() 

样本点如图所示:

python中matplotlib实现最小二乘法拟合的过程详解

拟合直线

设 y = a0 + a1*x,我们利用最小二乘法的正则方程组来求解未知系数 a0 与 a1。

python中matplotlib实现最小二乘法拟合的过程详解

numpy 的 linalg 模块中有一个 solve 函数,它可以根据方程组的系数矩阵和方程右端构成的向量来求解未知量。

def linear_regression(x, y): 
 N = len(x)
 sumx = sum(x)
 sumy = sum(y)
 sumx2 = sum(x**2)
 sumxy = sum(x*y)

 A = np.mat([[N, sumx], [sumx, sumx2]])
 b = np.array([sumy, sumxy])

 return np.linalg.solve(A, b)

a0, a1 = linear_regression(X, Y) 

绘制直线

此时,我们已经得到了拟合后的直线方程系数 a0 和 a1。接下来,我们绘制出这条直线,并与样本点做对比。

# 生成拟合直线的绘制点
_X = [0, 5] 
_Y = [a0 + a1 * x for x in _X]

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2) 
plt.title("y = {} + {}x".format(a0, a1)) 
plt.show() 

拟合效果如下:

python中matplotlib实现最小二乘法拟合的过程详解

二、最小二乘法拟合曲线

生成样本点

与生成直线样本点相同,我们在曲线 y = 2 + 3x + 4x^2 附近生成服从正态分布的随机点,作为拟合曲线的样本点。

import numpy as np 
import matplotlib.pyplot as plt

# y = 2 + 3x + 4x^2
X = np.arange(0, 5, 0.1) 
Z = [2 + 3 * x + 4 * x ** 2 for x in X] 
Y = np.array([np.random.normal(z,3) for z in Z])

plt.plot(X, Y, 'ro') 
plt.show() 

样本点如图所示:

python中matplotlib实现最小二乘法拟合的过程详解

拟合曲线

设该曲线的方程为 y = a0 + a1*x + a2*x^2,同样,我们通过正则方程组来求解未知量 a0、a1 和 a2。

python中matplotlib实现最小二乘法拟合的过程详解

# 生成系数矩阵A
def gen_coefficient_matrix(X, Y): 
 N = len(X)
 m = 3
 A = []
 # 计算每一个方程的系数
 for i in range(m):
  a = []
  # 计算当前方程中的每一个系数
  for j in range(m):
   a.append(sum(X ** (i+j)))
  A.append(a)
 return A

# 计算方程组的右端向量b
def gen_right_vector(X, Y): 
 N = len(X)
 m = 3
 b = []
 for i in range(m):
  b.append(sum(X**i * Y))
 return b

A = gen_coefficient_matrix(X, Y) 
b = gen_right_vector(X, Y)

a0, a1, a2 = np.linalg.solve(A, b) 

绘制曲线

我们根据求得的曲线方程,绘制出曲线的图像。

# 生成拟合曲线的绘制点
_X = np.arange(0, 5, 0.1) 
_Y = np.array([a0 + a1*x + a2*x**2 for x in _X])

plt.plot(X, Y, 'ro', _X, _Y, 'b', linewidth=2) 
plt.title("y = {} + {}x + {}$x^2$ ".format(a0, a1, a2)) 
plt.show() 

拟合效果如下:

python中matplotlib实现最小二乘法拟合的过程详解

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对的支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。