决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法。
每次划分数据集的特征都有很多,那么我们怎么来选择到底根据哪一个特征划分数据集呢?这里我们需要引入信息增益和信息熵的概念。
一、信息增益
划分数据集的原则是:将无序的数据变的有序。在划分数据集之前之后信息发生的变化称为信息增益。知道如何计算信息增益,我们就可以计算根据每个特征划分数据集获得的信息增益,选择信息增益最高的特征就是最好的选择。首先我们先来明确一下信息的定义:符号xi的信息定义为 l(xi)=-log2 p(xi),p(xi)为选择该类的概率。那么信息源的熵H=-∑p(xi)·log2 p(xi)。根据这个公式我们下面编写代码计算香农熵
def calcShannonEnt(dataSet): NumEntries = len(dataSet) labelsCount = {} for i in dataSet: currentlabel = i[-1] if currentlabel not in labelsCount.keys(): labelsCount[currentlabel]=0 labelsCount[currentlabel]+=1 ShannonEnt = 0.0 for key in labelsCount: prob = labelsCount[key]/NumEntries ShannonEnt -= prob*log(prob,2) return ShannonEnt
上面的自定义函数我们需要在之前导入log方法,from math import log。 我们可以先用一个简单的例子来测试一下
def createdataSet(): #dataSet = [['1','1','yes'],['1','0','no'],['0','1','no'],['0','0','no']] dataSet = [[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,0,'no']] labels = ['no surfacing','flippers'] return dataSet,labels
这里的熵为0.811,当我们增加数据的类别时,熵会增加。这里更改后的数据集的类别有三种‘yes'、‘no'、‘maybe',也就是说数据越混乱,熵就越大。
分类算法出了需要计算信息熵,还需要划分数据集。决策树算法中我们对根据每个特征划分的数据集计算一次熵,然后判断按照哪个特征划分是最好的划分方式。
def splitDataSet(dataSet,axis,value): retDataSet = [] for featVec in dataSet: if featVec[axis] == value: reducedfeatVec = featVec[:axis] reducedfeatVec.extend(featVec[axis+1:]) retDataSet.append(reducedfeatVec) return retDataSet
axis表示划分数据集的特征,value表示特征的返回值。这里需要注意extend方法和append方法的区别。举例来说明这个区别
下面我们测试一下划分数据集函数的结果:
axis=0,value=1,按myDat数据集的第0个特征向量是否等于1进行划分。
接下来我们将遍历整个数据集,对每个划分的数据集计算香农熵,找到最好的特征划分方式
def choosebestfeatureToSplit(dataSet): Numfeatures = len(dataSet)-1 BaseShannonEnt = calcShannonEnt(dataSet) bestInfoGain=0.0 bestfeature = -1 for i in range(Numfeatures): featlist = [example[i] for example in dataSet] featSet = set(featlist) newEntropy = 0.0 for value in featSet: subDataSet = splitDataSet(dataSet,i,value) prob = len(subDataSet)/len(dataSet) newEntropy += prob*calcShannonEnt(subDataSet) infoGain = BaseShannonEnt-newEntropy if infoGain>bestInfoGain: bestInfoGain=infoGain bestfeature = i return bestfeature
信息增益是熵的减少或数据无序度的减少。最后比较所有特征中的信息增益,返回最好特征划分的索引。函数测试结果为
接下来开始递归构建决策树,我们需要在构建前计算列的数目,查看算法是否使用了所有的属性。这个函数跟跟第二章的calssify0采用同样的方法
def majorityCnt(classlist): ClassCount = {} for vote in classlist: if vote not in ClassCount.keys(): ClassCount[vote]=0 ClassCount[vote]+=1 sortedClassCount = sorted(ClassCount.items(),key = operator.itemgetter(1),reverse = True) return sortedClassCount[0][0] def createTrees(dataSet,labels): classList = [example[-1] for example in dataSet] if classList.count(classList[0]) == len(classList): return classList[0] if len(dataSet[0])==1: return majorityCnt(classList) bestfeature = choosebestfeatureToSplit(dataSet) bestfeatureLabel = labels[bestfeature] myTree = {bestfeatureLabel:{}} del(labels[bestfeature]) featValue = [example[bestfeature] for example in dataSet] uniqueValue = set(featValue) for value in uniqueValue: subLabels = labels[:] myTree[bestfeatureLabel][value] = createTrees(splitDataSet(dataSet,bestfeature,value),subLabels) return myTree
最终决策树得到的结果如下:
有了如上的结果,我们看起来并不直观,所以我们接下来用matplotlib注解绘制树形图。matplotlib提供了一个注解工具annotations,它可以在数据图形上添加文本注释。我们先来测试一下这个注解工具的使用。
import matplotlib.pyplot as plt decisionNode = dict(boxstyle = 'sawtooth',fc = '0.8') leafNode = dict(boxstyle = 'sawtooth',fc = '0.8') arrow_args = dict(arrowstyle = '<-') def plotNode(nodeTxt,centerPt,parentPt,nodeType): createPlot.ax1.annotate(nodeTxt,xy = parentPt,xycoords = 'axes fraction', xytext = centerPt,textcoords = 'axes fraction', va = 'center',ha = 'center',bbox = nodeType, arrowprops = arrow_args) def createPlot(): fig = plt.figure(1,facecolor = 'white') fig.clf() createPlot.ax1 = plt.subplot(111,frameon = False) plotNode('test1',(0.5,0.1),(0.1,0.5),decisionNode) plotNode('test2',(0.8,0.1),(0.3,0.8),leafNode) plt.show()
测试过这个小例子之后我们就要开始构建注解树了。虽然有xy坐标,但在如何放置树节点的时候我们会遇到一些麻烦。所以我们需要知道有多少个叶节点,树的深度有多少层。下面的两个函数就是为了得到叶节点数目和树的深度,两个函数有相同的结构,从第一个关键字开始遍历所有的子节点,使用type()函数判断子节点是否为字典类型,若为字典类型,则可以认为该子节点是一个判断节点,然后递归调用函数getNumleafs(),使得函数遍历整棵树,并返回叶子节点数。第2个函数getTreeDepth()计算遍历过程中遇到判断节点的个数。该函数的终止条件是叶子节点,一旦到达叶子节点,则从递归调用中返回,并将计算树深度的变量加一
def getNumleafs(myTree): numLeafs=0 key_sorted= sorted(myTree.keys()) firstStr = key_sorted[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__=='dict': numLeafs+=getNumleafs(secondDict[key]) else: numLeafs+=1 return numLeafs def getTreeDepth(myTree): maxdepth=0 key_sorted= sorted(myTree.keys()) firstStr = key_sorted[0] secondDict = myTree[firstStr] for key in secondDict.keys(): if type(secondDict[key]).__name__ == 'dict': thedepth=1+getTreeDepth(secondDict[key]) else: thedepth=1 if thedepth>maxdepth: maxdepth=thedepth return maxdepth
测试结果如下
我们先给出最终的决策树图来验证上述结果的正确性
可以看出树的深度确实是有两层,叶节点的数目是3。接下来我们给出绘制决策树图的关键函数,结果就得到上图中决策树。
def plotMidText(cntrPt,parentPt,txtString): xMid = (parentPt[0]-cntrPt[0])/2.0+cntrPt[0] yMid = (parentPt[1]-cntrPt[1])/2.0+cntrPt[1] createPlot.ax1.text(xMid,yMid,txtString) def plotTree(myTree,parentPt,nodeTxt): numLeafs = getNumleafs(myTree) depth = getTreeDepth(myTree) key_sorted= sorted(myTree.keys()) firstStr = key_sorted[0] cntrPt = (plotTree.xOff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.yOff) plotMidText(cntrPt,parentPt,nodeTxt) plotNode(firstStr,cntrPt,parentPt,decisionNode) secondDict = myTree[firstStr] plotTree.yOff -= 1.0/plotTree.totalD for key in secondDict.keys(): if type(secondDict[key]).__name__ == 'dict': plotTree(secondDict[key],cntrPt,str(key)) else: plotTree.xOff+=1.0/plotTree.totalW plotNode(secondDict[key],(plotTree.xOff,plotTree.yOff),cntrPt,leafNode) plotMidText((plotTree.xOff,plotTree.yOff),cntrPt,str(key)) plotTree.yOff+=1.0/plotTree.totalD def createPlot(inTree): fig = plt.figure(1,facecolor = 'white') fig.clf() axprops = dict(xticks = [],yticks = []) createPlot.ax1 = plt.subplot(111,frameon = False,**axprops) plotTree.totalW = float(getNumleafs(inTree)) plotTree.totalD = float(getTreeDepth(inTree)) plotTree.xOff = -0.5/ plotTree.totalW; plotTree.yOff = 1.0 plotTree(inTree,(0.5,1.0),'') plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 谭艳《遗憾DSD》2023 [WAV+CUE][1G]
- Beyond2024《真的见证》头版限量编号MQA-UHQCD[WAV+CUE]
- 瑞鸣唱片2024-《荒城之月》SACD传统民谣[ISO]
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]