几个特殊的函数(待补充)
python是支持多种范型的语言,可以进行所谓函数式编程,其突出体现在有这么几个函数: filter、map、reduce、lambda、yield
lambda
> g = lambda x,y:x+y #x+y,并返回结果 > g(3,4) 7 > (lambda x:x**2)(4) #返回4的平方 16
lambda函数的使用方法:
在lambda后面直接跟变量
变量后面是冒号
冒号后面是表达式,表达式计算结果就是本函数的返回值
冒号后面是表达式,表达式计算结果就是本函数的返回值
比如,要打印一个list,里面依次是某个数字的1次方,二次方,三次方,四次方。用lambda可以这样做:
> lamb = [ lambda x:x,lambda x:x**2,lambda x:x**3,lambda x:x**4 ] > for i in lamb: ... print i(3), ... 3 9 27 81
map
map()是python的一个内置函数,它的基本样式是:
map(func,seq)
func是一个函数,seq是一个序列对象。在执行的时候,序列对象中的每个元素,按照从左到右的顺序,依次被取出来,并放入
到func那个函数里面,并将func的返回值依次存到一个list中。如
> items = [1,2,3,4,5] > squared = [] > for i in items: ... squared.append(i**2) ... > squared [1, 4, 9, 16, 25] > def sqr(x): return x**2 ... > map(sqr,items) [1, 4, 9, 16, 25] > map(lambda x: x**2, items) [1, 4, 9, 16, 25] > [ x**2 for x in items ] #这个我最喜欢了,一般情况下速度足够快,而且可读性强 [1, 4, 9, 16, 25]
要点:
对iterable中的每个元素,依次应用function的方法(本质上就是一个for循环)
将所有结果返回一个list
如果参数很多,则对那些参数并行执行function
继续下面两个例子:
> lst1 = [1,2,3,4,5] > lst2 = [6,7,8,9,0] > map(lambda x,y: x+y, lst1,lst2) #将两个列表中的对应项加起来,并返回一个结果列表 [7, 9, 11, 13, 5]
> lst1 = [1,2,3,4,5] > lst2 = [6,7,8,9,0] > lst3 = [7,8,9,2,1] > map(lambda x,y,z: x+y+z, lst1,lst2,lst3) [14, 17, 20, 15, 6]
可以看到map函数的强大和简洁。如果使用for循环将会很繁琐
reduce
直接看例子:
> reduce(lambda x,y: x+y,[1,2,3,4,5]) 15
reduce函数的计算方式是将列表中的元素累加,((((1+2)+3)+4)+5)=15 与map函数相比较就可以看出两者之间的区别。map是上下运算,reduce是横着逐个元素进行运算。
reduce含可以接受第三个值作为初始值:例如
> reduce(lambda x,y: x+y,[1,2,3,4,5],100) 115
上述列表中计算将以100为初始值执行累加计算,先计算 100+1
filter
filter的中文含义是“过滤器”,在python中,它就是起到了过滤器的作用.
通过下面代码体会:
> numbers = range(-5,5) > numbers [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4] > filter(lambda x: x>0, numbers) [1, 2, 3, 4] > [x for x in numbers if x>0] #与上面那句等效 [1, 2, 3, 4] > filter(lambda x: x > 3, [1,2,3,4,5]) [4,5]
拜读下filter的官方文档解释:
filter(...) filter(function or None, sequence) -> list, tuple, or string Return those items of sequence for which function(item) is true. If function is None, return the items that are true. If sequence is a tuple or string, return the same type, else return a list.
总结
以上就是本文关于简单了解Python中的几种函数的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:Python算法输出1-9数组形成的结果为100的所有运算式、Python生成数字图片代码分享等,有什么问题可以随时留言,小编会及时回复大家的。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 林隆璇.1989-愤怒的情歌【巨石】【WAV+CUE】
- 勤琴《海上花》[DTS-WAV分轨]
- 群星《歌声有故事》[DTS-WAV分轨]
- [发烧人声]群星《邂逅》DTS-WAV
- 艻打绿《夏/狂热(苏打绿版)》[320K/MP3][106.42MB]
- 艻打绿《夏/狂热(苏打绿版)》[FLAC分轨][574.2MB]
- 黄雨勳《魔法列车首部曲》[320K/MP3][33.1MB]
- 李蕙敏.2014-记得·销魂新歌+精丫乐意唱片】【WAV+CUE】
- 谢金燕.1995-含泪跳恰蔷冠登】【WAV+CUE】
- 于文文.2024-天蝎座【华纳】【FLAC分轨】
- 黄雨勳《魔法列车首部曲》[FLAC/分轨][173.61MB]
- 群星《歌手2024 第13期》[320K/MP3][50.09MB]
- 群星《歌手2024 第13期》[FLAC/分轨][325.93MB]
- 阿木乃《爱情买卖》DTS-ES【NRG镜像】
- 江蕾《爱是这样甜》DTS-WAV