概率论啊概率论,差不多忘完了。

基于概率论的分类方法:朴素贝叶斯

1. 概述

贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。

2. 贝叶斯理论 & 条件概率

2.1 贝叶斯理论

我们现在有一个数据集,它由两类数据组成,数据分布如下图所示:

Python编程之基于概率论的分类方法:朴素贝叶斯

我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(x,y) 表示数据点 (x,y) 属于类别 2(图中三角形表示的类别)的概率,那么对于一个新数据点 (x,y),可以用下面的规则来判断它的类别:

如果 p1(x,y) > p2(x,y) ,那么类别为1
如果 p2(x,y) > p1(x,y) ,那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

2.1.2 条件概率

如果你对 p(x,y|c1) 符号很熟悉,那么可以跳过本小节。

有一个装了 7 块石头的罐子,其中 3 块是白色的,4 块是黑色的。如果从罐子中随机取出一块石头,那么是白色石头的可能性是多少?由于取石头有 7 种可能,其中 3 种为白色,所以取出白色石头的概率为 3/7 。那么取到黑色石头的概率又是多少呢?很显然,是 4/7 。我们使用 P(white) 来表示取到白色石头的概率,其概率值可以通过白色石头数目除以总的石头数目来得到。

Python编程之基于概率论的分类方法:朴素贝叶斯

如果这 7 块石头如下图所示,放在两个桶中,那么上述概率应该如何计算?

Python编程之基于概率论的分类方法:朴素贝叶斯

计算 P(white) 或者 P(black) ,如果事先我们知道石头所在桶的信息是会改变结果的。这就是所谓的条件概率(conditional probablity)。假定计算的是从 B 桶取到白色石头的概率,这个概率可以记作 P(white|bucketB) ,我们称之为“在已知石头出自 B 桶的条件下,取出白色石头的概率”。很容易得到,P(white|bucketA) 值为 2/4 ,P(white|bucketB) 的值为 1/3 。

条件概率的计算公式如下:

P(white|bucketB) = P(white and bucketB) / P(bucketB)

首先,我们用 B 桶中白色石头的个数除以两个桶中总的石头数,得到 P(white and bucketB) = 1/7 .其次,由于 B 桶中有 3 块石头,而总石头数为 7 ,于是 P(bucketB) 就等于 3/7 。于是又 P(white|bucketB) = P(white and bucketB) / P(bucketB) = (1/7) / (3/7) = 1/3 。

另外一种有效计算条件概率的方法称为贝叶斯准则。贝叶斯准则告诉我们如何交换条件概率中的条件与结果,即如果已知 P(x|c),要求 P(c|x),那么可以使用下面的计算方法:

Python编程之基于概率论的分类方法:朴素贝叶斯

使用条件概率来分类

上面我们提到贝叶斯决策理论要求计算两个概率 p1(x, y) 和 p2(x, y):

如果 p1(x, y) > p2(x, y), 那么属于类别 1;
如果 p2(x, y) > p1(X, y), 那么属于类别 2.

这并不是贝叶斯决策理论的所有内容。使用 p1() 和 p2() 只是为了尽可能简化描述,而真正需要计算和比较的是 p(c1|x, y) 和 p(c2|x, y) .这些符号所代表的具体意义是: 给定某个由 x、y 表示的数据点,那么该数据点来自类别 c1 的概率是多少?数据点来自类别 c2 的概率又是多少?注意这些概率与概率 p(x, y|c1) 并不一样,不过可以使用贝叶斯准则来交换概率中条件与结果。具体地,应用贝叶斯准则得到:

Python编程之基于概率论的分类方法:朴素贝叶斯

使用上面这些定义,可以定义贝叶斯分类准则为:

如果 P(c1|x, y) > P(c2|x, y), 那么属于类别 c1;
如果 P(c2|x, y) > P(c1|x, y), 那么属于类别 c2.

在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。我们可以观察文档中出现的词,并把每个词作为一个特征,而每个词的出现或者不出现作为该特征的值,这样得到的特征数目就会跟词汇表中的词的数目一样多。

我们假设特征之间 相互独立 。所谓 独立(independence) 指的是统计意义上的独立,即一个特征或者单词出现的可能性与它和其他单词相邻没有关系,比如说,“我们”中的“我”和“们”出现的概率与这两个字相邻没有任何关系。这个假设正是朴素贝叶斯分类器中 朴素(naive) 一词的含义。朴素贝叶斯分类器中的另一个假设是,每个特征同等重要。

Note: 朴素贝叶斯分类器通常有两种实现方式: 一种基于伯努利模型实现,一种基于多项式模型实现。这里采用前一种实现方式。该实现方式中并不考虑词在文档中出现的次数,只考虑出不出现,因此在这个意义上相当于假设词是等权重的。

2.2 朴素贝叶斯场景

机器学习的一个重要应用就是文档的自动分类。

在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。我们可以观察文档中出现的词,并把每个词作为一个特征,而每个词的出现或者不出现作为该特征的值,这样得到的特征数目就会跟词汇表中的词的数目一样多。

朴素贝叶斯是上面介绍的贝叶斯分类器的一个扩展,是用于文档分类的常用算法。下面我们会进行一些朴素贝叶斯分类的实践项目。

2.3 朴素贝叶斯 原理

朴素贝叶斯 工作原理

提取所有文档中的词条并进行去重
获取文档的所有类别
计算每个类别中的文档数目
对每篇训练文档:

对每个类别:
如果词条出现在文档中-->增加该词条的计数值(for循环或者矩阵相加)
增加所有词条的计数值(此类别下词条总数)
对每个类别:

对每个词条:
将该词条的数目除以总词条数目得到的条件概率(P(词条|类别))
返回该文档属于每个类别的条件概率(P(类别|文档的所有词条))

2.4 朴素贝叶斯开发流程

收集数据: 可以使用任何方法。

准备数据: 需要数值型或者布尔型数据。

分析数据: 有大量特征时,绘制特征作用不大,此时使用直方图效果更好。

训练算法: 计算不同的独立特征的条件概率。

测试算法: 计算错误率。

使用算法: 一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。

2.5 朴素贝叶斯算法特点

优点: 在数据较少的情况下仍然有效,可以处理多类别问题。
缺点: 对于输入数据的准备方式较为敏感。
适用数据类型: 标称型数据。

2.6 朴素贝叶斯 项目案例

2.6.1 项目案例1

屏蔽社区留言板的侮辱性言论

2.6.1.1 项目概述

构建一个快速过滤器来屏蔽在线社区留言板上的侮辱性言论。如果某条留言使用了负面或者侮辱性的语言,那么就将该留言标识为内容不当。对此问题建立两个类别: 侮辱类和非侮辱类,使用 1 和 0 分别表示。

2.6.1.2 开发流程

收集数据: 可以使用任何方法

准备数据: 从文本中构建词向量

分析数据: 检查词条确保解析的正确性

训练算法: 从词向量计算概率

测试算法: 根据现实情况修改分类器

使用算法: 对社区留言板言论进行分类

收集数据: 可以使用任何方法

2.6.1.3 构造词表

def loadDataSet():
  """
  创建数据集
  :return: 单词列表postingList, 所属类别classVec
  """
  postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0,1,1,1......]
          ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
          ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
          ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
          ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
          ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
  classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not
  return postingList, classVec

2.6.1.4 准备数据: 从文本中构建词向量

def createVocabList(dataSet):
  """
  获取所有单词的集合
  :param dataSet: 数据集
  :return: 所有单词的集合(即不含重复元素的单词列表)
  """
  vocabSet = set([]) # create empty set
  for document in dataSet:
    # 操作符 | 用于求两个集合的并集
    vocabSet = vocabSet | set(document) # union of the two sets
  return list(vocabSet)
 
 
def setOfWords2Vec(vocabList, inputSet):
  """
  遍历查看该单词是否出现,出现该单词则将该单词置1
  :param vocabList: 所有单词集合列表
  :param inputSet: 输入数据集
  :return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中
  """
  # 创建一个和词汇表等长的向量,并将其元素都设置为0
  returnVec = [0] * len(vocabList)# [0,0......]
  # 遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1
  for word in inputSet:
    if word in vocabList:
      returnVec[vocabList.index(word)] = 1
    else:
      print "the word: %s is not in my Vocabulary!" % word
  return returnVec

2.6.1.5 分析数据: 检查词条确保解析的正确性

检查函数执行情况,检查词表,不出现重复单词,需要的话,可以对其进行排序。

> listOPosts, listClasses = bayes.loadDataSet()
> myVocabList = bayes.createVocabList(listOPosts)
> myVocabList
['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park',
'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how',
'stupid', 'so', 'take', 'mr', 'steak', 'my']

检查函数有效性。例如:myVocabList 中索引为 2 的元素是什么单词?应该是是 help 。该单词在第一篇文档中出现了,现在检查一下看看它是否出现在第四篇文档中。

> bayes.setOfWords2Vec(myVocabList, listOPosts[0])
[0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1]
 
> bayes.setOfWords2Vec(myVocabList, listOPosts[3])
[0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]

2.6.1.6 训练算法: 从词向量计算概率

现在已经知道了一个词是否出现在一篇文档中,也知道该文档所属的类别。接下来我们重写贝叶斯准则,将之前的 x, y 替换为 w. 粗体的 w 表示这是一个向量,即它由多个值组成。在这个例子中,数值个数与词汇表中的词个数相同。

Python编程之基于概率论的分类方法:朴素贝叶斯

我们使用上述公式,对每个类计算该值,然后比较这两个概率值的大小。

首先可以通过类别 i (侮辱性留言或者非侮辱性留言)中的文档数除以总的文档数来计算概率 p(ci) 。接下来计算 p(w | ci) ,这里就要用到朴素贝叶斯假设。如果将 w 展开为一个个独立特征,那么就可以将上述概率写作 p(w0, w1, w2…wn | ci) 。这里假设所有词都互相独立,该假设也称作条件独立性假设(例如 A 和 B 两个人抛骰子,概率是互不影响的,也就是相互独立的,A 抛 2点的同时 B 抛 3 点的概率就是 1/6 * 1/6),它意味着可以使用 p(w0 | ci)p(w1 | ci)p(w2 | ci)…p(wn | ci) 来计算上述概率,这样就极大地简化了计算的过程。

2.6.1.7 朴素贝叶斯分类器训练函数

def _trainNB0(trainMatrix, trainCategory):
  """
  训练数据原版
  :param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...]
  :param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵
  :return:
  """
  # 文件数
  numTrainDocs = len(trainMatrix)
  # 单词数
  numWords = len(trainMatrix[0])
  # 侮辱性文件的出现概率,即trainCategory中所有的1的个数,
  # 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
  pAbusive = sum(trainCategory) / float(numTrainDocs)
  # 构造单词出现次数列表
  p0Num = zeros(numWords) # [0,0,0,.....]
  p1Num = zeros(numWords) # [0,0,0,.....]
 
  # 整个数据集单词出现总数
  p0Denom = 0.0
  p1Denom = 0.0
  for i in range(numTrainDocs):
    # 是否是侮辱性文件
    if trainCategory[i] == 1:
      # 如果是侮辱性文件,对侮辱性文件的向量进行加和
      p1Num += trainMatrix[i] #[0,1,1,....] + [0,1,1,....]->[0,2,2,...]
      # 对向量中的所有元素进行求和,也就是计算所有侮辱性文件中出现的单词总数
      p1Denom += sum(trainMatrix[i])
    else:
      p0Num += trainMatrix[i]
      p0Denom += sum(trainMatrix[i])
  # 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表
  # 即 在1类别下,每个单词出现的概率
  p1Vect = p1Num / p1Denom# [1,2,3,5]/90->[1/90,...]
  # 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表
  # 即 在0类别下,每个单词出现的概率
  p0Vect = p0Num / p0Denom
  return p0Vect, p1Vect, pAbusive

总结

以上就是本文关于Python编程之基于概率论的分类方法:朴素贝叶斯的全部内容,希望对大家有所帮助。感兴趣的朋友可以参阅本站:Python内存管理方式和垃圾回收算法解析、python基础练习之几个简单的游戏、python使用邻接矩阵构造图代码示例等,有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对网站的支持!

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。