kNN(k-nearest neighbor)是一种基本的分类与回归的算法。这里我们先只讨论分类中的kNN算法。
k邻近算法的输入为实例的特征向量,对对应于特征空间中的点;输出为实例的类别,可以取多类,k近邻法是建设给定一个训练数据集,其中的实例类别已定,分类时,对于新的实例,根据其k个最邻近的训练实例的类别,通过多数表决等方式进行预测。所以可以说,k近邻法不具有显示的学习过程。k临近算法实际上是利用训练数据集对特征向量空间进行划分,并作为其分类的“模型”
k值的选择,距离的度量和分类决策规则是k近邻算法的三个基本要素。
这里需要说明的是,对于距离的度量,我们有很多种度量方法可以选择,如欧氏距离(2-范数),曼哈顿距离(1-范数),无穷范数等,根据不同的实例,我们可以选择不同的距离度量方法。
下面给出了利用python和sklearn库实现的kNN算法的过程及部分注释:
# coding=utf-8 # 首先利用sklearn的库进行knn算法的建立与预测 # from sklearn import neighbors # from sklearn import datasets # # knn = neighbors.KNeighborsClassifier() # 调用分类器赋在变量knn上 # # iris = datasets.load_iris() # 返回一个数据库,赋值在iris上 # # print iris # 显示这个数据集 # # knn.fit(iris.data, iris.target) # fit的第一个参数 是特征值矩阵,第二个参数是一维的向量 # # predictedLabel = knn.predict([[0.1,0.2,0.3,0.4]]) # # print predictedLabel # 下面自己写一个程序实现knn算法 import csv import random import math import operator # filename是指文件名,split是某一个数字,数字前的数据当做训练集,数字后的数据当做测试集 # trainingSet是训练集,testSet是测试集 # 函数作用,加载文件,并将文件通过随机数的方法分为训练集和测试集 def loadDataset(filename, split, trainingSet=[], testSet=[]): with open(filename, 'rb') as csvfile: # 导入文件为csvfile格式 lines = csv.reader(csvfile) # 读取所有的行 reader函数的作用 dataset = list(lines) # 将所有的行转换为list的数据节后 for x in range(len(dataset)-1): # x在总共的行数中遍历 for y in range(4): dataset[x][y] = float(dataset[x][y]) if random.random() < split: trainingSet.append(dataset[x]) else: testSet.append(dataset[x]) # 函数作用:计算欧氏距离 # 函数的输入是两个实例和他们的维度 def euclideanDistance(instance1, instance2, length): distance = 0 for x in range(length): # 对于每一个维度内进行一个差的计算,计算出所有维度的平方和 distance += pow((instance1[x] - instance2[x]),2) return math.sqrt(distance) # 函数作用:返回最近的k的neightbor # 也就是返回在trainingSet中距离testInstance最近的k个邻居 def getNeigthbors(trainingSet, testInstance, k): distances =[] # 距离的容器,用来存放所有的距离值 length = len(testInstance) - 1 # 用来存放testInstance的维度 for x in range(len(trainingSet)): # 对于每一个x 计算训练集中的数据与实例的距离 dist = euclideanDistance(testInstance,trainingSet[x],length) distances.append((trainingSet[x],dist)) # 把这些距离从小到大排起来 distances.sort(key=operator.itemgetter(1)) neighbors = [] for x in range(k): neighbors.append(distances[x][0]) return neighbors # 返回最近的邻居 def getResponse(neighbors): classVotes = {} for x in range(len(neighbors)): response = neighbors[x][-1] if response in classVotes: classVotes[response] += 1 else: classVotes[response] = 1 sortedVotes = sorted(classVotes.iteritems(),key=operator.itemgetter(1),reverse=True) return sortedVotes[0][0] # 用来检验预测结果的正确率 def getAccuracy(testSet,predictions): correct = 0 for x in range(len(testSet)): if testSet[x][-1] == predictions[x]: # [-1]值的是最后一个值,也就是每行的最后的值,即为花的分类 correct += 1 return (correct/float(len(testSet))) * 100.00 def main(): # prepare data trainingSet = [] testSet = [] split = 0.67 loadDataset('irisdata.txt',split,trainingSet,testSet) # r的作用是防止错误字符串意思 print 'Train Set' + repr(len(trainingSet)) print 'Test Set' + repr(len(testSet)) # generate predicitions predicitions = [] k = 3 for x in range(len(testSet)): neighbors = getNeigthbors(trainingSet,testSet[x],k) result = getResponse(neighbors) predicitions.append(result) print('> predicition = ' + repr(result) + ', actual = ' +repr(testSet[x][-1])) accuracy = getAccuracy(testSet,predicitions) print('Accuracy:' + repr(accuracy) + '%') main()
程序执行后,相应的输出如下:
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月19日
2024年11月19日
- 谭艳《遗憾DSD》2023 [WAV+CUE][1G]
- Beyond2024《真的见证》头版限量编号MQA-UHQCD[WAV+CUE]
- 瑞鸣唱片2024-《荒城之月》SACD传统民谣[ISO]
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]