本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下
knn算法描述
对需要分类的点依次执行以下操作:
1.计算已知类别数据集中每个点与该点之间的距离
2.按照距离递增顺序排序
3.选取与该点距离最近的k个点
4.确定前k个点所在类别出现的频率
5.返回前k个点出现频率最高的类别作为该点的预测分类
knn算法实现
数据处理
#从文件中读取数据,返回的数据和分类均为二维数组 def loadDataSet(filename): dataSet = [] labels = [] fr = open(filename) for line in fr.readlines(): lineArr = line.strip().split(",") dataSet.append([float(lineArr[0]),float(lineArr[1])]) labels.append([float(lineArr[2])]) return dataSet , labels
knn算法
#计算两个向量之间的欧氏距离 def calDist(X1 , X2): sum = 0 for x1 , x2 in zip(X1 , X2): sum += (x1 - x2) ** 2 return sum ** 0.5 def knn(data , dataSet , labels , k): n = shape(dataSet)[0] for i in range(n): dist = calDist(data , dataSet[i]) #只记录两点之间的距离和已知点的类别 labels[i].append(dist) #按照距离递增排序 labels.sort(key=lambda x:x[1]) count = {} #统计每个类别出现的频率 for i in range(k): key = labels[i][0] if count.has_key(key): count[key] += 1 else : count[key] = 1 #按频率递减排序 sortCount = sorted(count.items(),key=lambda item:item[1],reverse=True) return sortCount[0][0]#返回频率最高的key,即label
结果测试
已知类别数据(来源于西瓜书+虚构)
0.697,0.460,1
0.774,0.376,1
0.720,0.330,1
0.634,0.264,1
0.608,0.318,1
0.556,0.215,1
0.403,0.237,1
0.481,0.149,1
0.437,0.211,1
0.525,0.186,1
0.666,0.091,0
0.639,0.161,0
0.657,0.198,0
0.593,0.042,0
0.719,0.103,0
0.671,0.196,0
0.703,0.121,0
0.614,0.116,0
绘图方法
def drawPoints(data , dataSet, labels): xcord1 = []; ycord1 = []; xcord2 = []; ycord2 = []; for i in range(shape(dataSet)[0]): if labels[i][0] == 0: xcord1.append(dataSet[i][0]) ycord1.append(dataSet[i][1]) if labels[i][0] == 1: xcord2.append(dataSet[i][0]) ycord2.append(dataSet[i][1]) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(xcord1, ycord1, s=30, c='blue', marker='s',label=0) ax.scatter(xcord2, ycord2, s=30, c='green',label=1) ax.scatter(data[0], data[1], s=30, c='red',label="testdata") plt.legend(loc='upper right') plt.show()
测试代码
dataSet , labels = loadDataSet('dataSet.txt') data = [0.6767,0.2122] drawPoints(data , dataSet, labels) newlabels = knn(data, dataSet , labels , 5) print newlabels
运行结果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月19日
2024年11月19日
- 傲日格乐《黑马琴HQCD》[WAV+CUE]
- 群星.2022-福茂巨星·时空之轮日本唱片志系列DISC3范晓萱-自言自语【福茂】【WAV+CUE】
- 群星.2022-福茂巨星·时空之轮日本唱片志系列DISC4那英-白天不懂夜的黑【福茂】【WAV+CUE】
- 群星.2015-华丽上班族电影原声大碟【大右音乐】【WAV+CUE】
- 陈粒《乌有乡地图》[320K/MP3][21.81MB]
- 陈粒《乌有乡地图》[FLAC/分轨][398.39MB]
- 刘雨昕《2023 XANADU TOUR LIVE原创作品合集》[320K/MP3][26.73MB]
- BEYOND《永远等待25周年限量版》香港盒装版5CD[WAV+CUE]
- 群星《2018年度最佳发烧男声》2CD/DTS[WAV]
- 群星《2018年度最佳发烧女声》2CD/DTS-ES[WAV]
- 刘雨昕《2023 XANADU TOUR LIVE原创作品合集》[FLAC/分轨][134.18MB]
- 李梦瑶《瑶不可及(DSD)》[WAV+CUE][1.1G]
- 群星《2022年度抖音新歌》黑胶碟2CD[WAV+CUE][1.6G]
- 方伊琪.2008-不一样的方伊琪【风行】【WAV+CUE】
- 谭咏麟.2023-爱情陷阱(MQA-UHQCD限量版)【环球】【WAV+CUE】