SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。
SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的:
支持向量机通俗导论(理解SVM的3层境界)
JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了。。强烈推荐。
还有一个比较通俗的简单版本的:手把手教你实现SVM算法
SVN原理比较复杂,但是思想很简单,一句话概括,就是通过某种核函数,将数据在高维空间里寻找一个最优超平面,能够将两类数据分开。
针对不同数据集,不同的核函数的分类效果可能完全不一样。可选的核函数有这么几种:
线性函数:形如K(x,y)=x*y这样的线性函数;
多项式函数:形如K(x,y)=[(x·y)+1]^d这样的多项式函数;
径向基函数:形如K(x,y)=exp(-|x-y|^2/d^2)这样的指数函数;
Sigmoid函数:就是上一篇文章中讲到的Sigmoid函数。
我们就利用之前的几个数据集,直接给出Python代码,看看运行效果:
测试1:身高体重数据
# -*- coding: utf-8 -*- import numpy as np import scipy as sp from sklearn import svm from sklearn.cross_validation import train_test_split import matplotlib.pyplot as plt data = [] labels = [] with open("data\\1.txt") as ifile: for line in ifile: tokens = line.strip().split(' ') data.append([float(tk) for tk in tokens[:-1]]) labels.append(tokens[-1]) x = np.array(data) labels = np.array(labels) y = np.zeros(labels.shape) y[labels=='fat']=1 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.0) h = .02 # create a mesh to plot in x_min, x_max = x_train[:, 0].min() - 0.1, x_train[:, 0].max() + 0.1 y_min, y_max = x_train[:, 1].min() - 1, x_train[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) ''''' SVM ''' # title for the plots titles = ['LinearSVC (linear kernel)', 'SVC with polynomial (degree 3) kernel', 'SVC with RBF kernel', 'SVC with Sigmoid kernel'] clf_linear = svm.SVC(kernel='linear').fit(x, y) #clf_linear = svm.LinearSVC().fit(x, y) clf_poly = svm.SVC(kernel='poly', degree=3).fit(x, y) clf_rbf = svm.SVC().fit(x, y) clf_sigmoid = svm.SVC(kernel='sigmoid').fit(x, y) for i, clf in enumerate((clf_linear, clf_poly, clf_rbf, clf_sigmoid)): answer = clf.predict(np.c_[xx.ravel(), yy.ravel()]) print(clf) print(np.mean( answer == y_train)) print(answer) print(y_train) plt.subplot(2, 2, i + 1) plt.subplots_adjust(wspace=0.4, hspace=0.4) # Put the result into a color plot z = answer.reshape(xx.shape) plt.contourf(xx, yy, z, cmap=plt.cm.Paired, alpha=0.8) # Plot also the training points plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=plt.cm.Paired) plt.xlabel(u'身高') plt.ylabel(u'体重') plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) plt.xticks(()) plt.yticks(()) plt.title(titles[i]) plt.show()
运行结果如下:
可以看到,针对这个数据集,使用3次多项式核函数的SVM,得到的效果最好。
测试2:影评态度
下面看看SVM在康奈尔影评数据集上的表现:(代码略)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='linear', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
0.814285714286
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='poly', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)
0.492857142857
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)
0.492857142857
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='sigmoid', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
0.492857142857
可见在该数据集上,线性分类器效果最好。
测试3:圆形边界
最后我们测试一个数据分类边界为圆形的情况:圆形内为一类,原型外为一类。看这类非线性的数据SVM表现如何:
测试数据生成代码如下所示:
''''' 数据生成 ''' h = 0.1 x_min, x_max = -1, 1 y_min, y_max = -1, 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) n = xx.shape[0]*xx.shape[1] x = np.array([xx.T.reshape(n).T, xx.reshape(n)]).T y = (x[:,0]*x[:,0] + x[:,1]*x[:,1] < 0.8) y.reshape(xx.shape) x_train, x_test, y_train, y_test\ = train_test_split(x, y, test_size = 0.2)
测试结果如下:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='linear', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
0.65
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='poly', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
0.675
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
0.9625
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0, kernel='sigmoid', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
0.65
可以看到,对于这种边界,径向基函数的SVM得到了近似完美的分类结果。而其他的分类器显然束手无策。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]
- 林子祥《单手拍掌》华纳香港版[WAV+CUE][1G]
- 郑秀文.1997-我们的主题曲【华纳】【WAV+CUE】
- 群星.2001-生命因爱动听电影原创音乐AVCD【MEDIA】【WAV+CUE】