简介
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。
kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
本文将采用Python和numpy库实现KNN的核心算法,并使用一个简单的例子进行验证。
KNN核心算法的实现
对于KNN算法实现,首先我们计算欧式空间距离,然后根据距离排序,找到k个紧邻,找出最相近的分类。
from numpy import tile import operator def do_knn_classifier(in_array, data_set, labels, k): ''''' classify the in_array according the data set and labels ''' #计算距离适量 data_set_size = data_set.shape[0] diff_matrix = tile(in_array, (data_set_size, 1)) - data_set sq_diff_matrix = diff_matrix ** 2 sq_distance = sq_diff_matrix.sum(axis=1) distances = sq_distance ** 0.5 #argsort函数返回的是数组值从小到大的索引值, 距离排序 sorted_dist_indicies = distances.argsort() # 选择K个紧邻 class_count = {} for i in range(k): vote_label = labels[sorted_dist_indicies[i]] class_count[vote_label] = class_count.get(vote_label, 0) + 1 #排序,并返回最相邻的分类 sorted_class_count = sorted(class_count.iteritems(), key=operator.itemgetter(1), reverse=True) return sorted_class_count[0][0]
数值的归一化
多数情况下,由于选择的特征值取值范围比较大。在处理这种不同取值范围的特征值时,通常需要采用的方法就是将数值归一化,如将取值范围处理到0到1或-1到1之间。下面的公式可以将任意取值范围的特征值转化为0到1的区间内的值:
newValue = (oldValue - min) / (max - min)
其中min和max分别是数据集中的最小特征值和最大特征值。
from numpy import tile import operator def auto_normalize_data(data_set): ''''' 对数据集进行归一化操作 ''' # 参数0使函数可以从列中选取最小值,而不是当前行的最小值 min_vals = data_set.min(0) max_vals = data_set.max(0) ranges = max_vals - min_vals # 归一化处理 m = data_set.shape[0] norm_data_set = data_set - tile(min_vals, (m, 1)) norm_data_set = norm_data_set / tile(ranges, (m, 1)) return norm_data_set, ranges, min_vals
实例
以一个简单的例子来结束本文的介绍。在这里并不需要实现数据的归一化处理。
from numpy import array from knn.knn_classifier import do_knn_classifier def get_data_set(): ''''' Get data set and labels ''' group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels if __name__ == '__main__': data_set, labels = get_data_set() t = do_knn_classifier(array([0.2, 0.1]), data_set, labels, 3) print t
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 三国志8重制版恶名怎么消除 恶名影响与消除方法介绍
- 模拟之声慢刻CD《柏林之声5》2019[原抓WAV+CUE]
- AlexandraSoumm-Parisestunefte(2024)[24Bit-96kHz]FLAC
- 李嘉《国语转调1》[天王唱片][WAV整轨]
- 不是哥们 这都能跑?网友展示用720显卡跑《黑神话》
- 玩家自制《黑神话:悟空》亢金星君3D动画 现代妆容绝美
- 大佬的审美冲击!《GTA6》环境设计师展示最新作品
- 纪晓君.2001-野火·春风【魔岩】【WAV+CUE】
- 汪峰.2005-怒放的生命【创盟音乐】【WAV+CUE】
- 群星.1995-坠入情网【宝丽金】【WAV+CUE】
- 群星《谁杀死了Hi-Fi音乐》涂鸦精品 [WAV+CUE][1G]
- 群星1998《宝丽金最精彩98》香港首版[WAV+CUE][1G]
- 汪峰《也许我可以无视死亡》星文[WAV+CUE][1G]
- 李嘉-1991《国语转调2》[天王唱片][WAV整轨]
- 蔡琴2008《金声回忆录101》6CD[环星唱片][WAV整轨]