一、k均值聚类的简单介绍
假设样本分为c类,每个类均存在一个中心点,通过随机生成c个中心点进行迭代,计算每个样本点到类中心的距离(可以自定义、常用的是欧式距离)
将该样本点归入到最短距离所在的类,重新计算聚类中心,进行下次的重新划分样本,最终类中心不改变时,聚类完成
二、伪代码
三、python代码实现
#!/usr/bin/env python # coding=utf-8 import numpy as np import random import matplotlib.pyplot as plt #data:numpy.array dataset #k the number of cluster def k_means(data,k): #random generate cluster_center sample_num=data.shape[0] center_index=random.sample(range(sample_num),k) cluster_cen=data[center_index,:] is_change=1 cat=np.zeros(sample_num) while is_change: is_change=0 for i in range(sample_num): min_distance=100000 min_index=0 for j in range(k): sub_data=data[i,:]-cluster_cen[j,:] distance=np.inner(sub_data,sub_data) if distance<min_distance: min_distance=distance min_index=j+1 if cat[i]!=min_index: is_change=1 cat[i]=min_index for j in range(k): cluster_cen[j]=np.mean(data[cat==(j+1)],axis=0) return cat,cluster_cen if __name__=='__main__': #generate data cov=[[1,0],[0,1]] mean1=[1,-1] x1=np.random.multivariate_normal(mean1,cov,200) mean2=[5.5,-4.5] x2=np.random.multivariate_normal(mean2,cov,200) mean3=[1,4] x3=np.random.multivariate_normal(mean3,cov,200) mean4=[6,4.5] x4=np.random.multivariate_normal(mean4,cov,200) mean5=[9,0.0] x5=np.random.multivariate_normal(mean5,cov,200) X=np.vstack((x1,x2,x3,x4,x5)) #data distribution fig1=plt.figure(1) p1=plt.scatter(x1[:,0],x1[:,1],marker='o',color='r',label='x1') p2=plt.scatter(x2[:,0],x2[:,1],marker='+',color='m',label='x2') p3=plt.scatter(x3[:,0],x3[:,1],marker='x',color='b',label='x3') p4=plt.scatter(x4[:,0],x4[:,1],marker='*',color='g',label='x4') p5=plt.scatter(x5[:,0],x4[:,1],marker='+',color='y',label='x5') plt.title('original data') plt.legend(loc='upper right') cat,cluster_cen=k_means(X,5) print 'the number of cluster 1:',sum(cat==1) print 'the number of cluster 2:',sum(cat==2) print 'the number of cluster 3:',sum(cat==3) print 'the number of cluster 4:',sum(cat==4) print 'the number of cluster 5:',sum(cat==5) fig2=plt.figure(2) for i,m,lo,label in zip(range(5),['o','+','x','*','+'],['r','m','b','g','y'],['x1','x2','x3','x4','x5']): p=plt.scatter(X[cat==(i+1),0],X[cat==(i+1),1],marker=m,color=lo,label=label) plt.legend(loc='upper right') plt.title('the clustering result') plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2024年11月17日
2024年11月17日
- 中国武警男声合唱团《辉煌之声1天路》[DTS-WAV分轨]
- 紫薇《旧曲新韵》[320K/MP3][175.29MB]
- 紫薇《旧曲新韵》[FLAC/分轨][550.18MB]
- 周深《反深代词》[先听版][320K/MP3][72.71MB]
- 李佳薇.2024-会发光的【黑籁音乐】【FLAC分轨】
- 后弦.2012-很有爱【天浩盛世】【WAV+CUE】
- 林俊吉.2012-将你惜命命【美华】【WAV+CUE】
- 晓雅《分享》DTS-WAV
- 黑鸭子2008-飞歌[首版][WAV+CUE]
- 黄乙玲1989-水泼落地难收回[日本天龙版][WAV+CUE]
- 周深《反深代词》[先听版][FLAC/分轨][310.97MB]
- 姜育恒1984《什么时候·串起又散落》台湾复刻版[WAV+CUE][1G]
- 那英《如今》引进版[WAV+CUE][1G]
- 蔡幸娟.1991-真的让我爱你吗【飞碟】【WAV+CUE】
- 群星.2024-好团圆电视剧原声带【TME】【FLAC分轨】