拓扑排序

几乎在所有的项目,甚至日常生活,待完成的不同任务之间通常都会存在着某些依赖关系,这些依赖关系会为它们的执行顺序行程表部分约束。对于这种依赖关系,很容易将其表示成一个有向无环图(Directed Acyclic Graph,DAG,无环是一个重要条件),并将寻找其中依赖顺序的过程称为拓扑排序(topological sorting)。

拓扑排序要满足如下两个条件

  • 每个顶点出现且只出现一次。
  • 若A在序列中排在B的前面,则在图中不存在从B到A的路径。

拓扑排序算法

任何无回路的顶点活动网(AOV网)N都可以做出拓扑序列:

  • 从N中选出一个入度为0的顶点作为序列的下一顶点。
  • 从N网中删除所选顶点及其所有的出边。
  • 反复执行上面两个步骤,知道已经选出了图中的所有顶点,或者再也找不到入度为非0的顶点时算法结束。

如果剩下入度非0的顶点,就说明N中有回路,不存在拓扑排序。

存在回路,意味着某些活动的开始要以其自己的完成作为先决条件,这种现象成为活动之间的死锁。一种常见的顶点活动网实例是大学课程的先修课程。课程知识有前后练习,一门课可能以其他课程的知识为基础,学生想选修这门课程时,要看是否已修过所有先修课程。如果存在一个回路的话,那就意味着进入了一个循环,那么该同学就毕不了业了。

因此可以说拓扑排序算法是为了做出满足制约关系的工作安排。

下面我们操作一个实例,如下图是一个有向无环图:

python实现拓扑排序的基本教程

用字典表示:G = { 'a':'bce', 'b':'d','c':'d','d':'','e':'cd'}

代码实现:

def toposort(graph):
 in_degrees = dict((u,0) for u in graph) #初始化所有顶点入度为0
 vertex_num = len(in_degrees)
 for u in graph:
  for v in graph[u]:
   in_degrees[v] += 1  #计算每个顶点的入度
 Q = [u for u in in_degrees if in_degrees[u] == 0] # 筛选入度为0的顶点
 Seq = []
 while Q:
  u = Q.pop()  #默认从最后一个删除
  Seq.append(u)
  for v in graph[u]:
   in_degrees[v] -= 1  #移除其所有指向
   if in_degrees[v] == 0:
    Q.append(v)   #再次筛选入度为0的顶点
 if len(Seq) == vertex_num:  #如果循环结束后存在非0入度的顶点说明图中有环,不存在拓扑排序
  return Seq
 else:
  print("there's a circle.")
G = {
 'a':'bce',
 'b':'d',
 'c':'d',
 'd':'',
 'e':'cd'
}
print(toposort(G))

输出结果:

['a', 'e', 'c', 'b', 'd']

图中有环的情况:

python实现拓扑排序的基本教程

G = { 'a':'bce', 'b':'d','c':'d','d':'e','e':'cd'}

输出结果:

there's a circle.
None

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com