一、贝叶斯分类介绍

贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类方法进行比较的有关研究结果表明:简单贝叶斯分类器(称为基本贝叶斯分类器)在分类性能上与决策树和神经网络都是可比的。在处理大规模数据库时,贝叶斯分类器已表现出较高的分类准确性和运算性能。基本贝叶斯分类器假设一个指定类别中各属性的取值是相互独立的。这一假设也被称为:类别条件独立,它可以帮助有效减少在构造贝叶斯分类器时所需要进行的计算。

二、贝叶斯定理

p(A|B) 条件概率 表示在B发生的前提下,A发生的概率;

 python机器学习之贝叶斯分类

基本贝叶斯分类器通常都假设各类别是相互独立的,即各属性的取值是相互独立的。对于特定的类别且其各属性相互独立,就会有:

 P(AB|C) = P(A|C)*P(B|C)

三、贝叶斯分类案例

1.分类属性是离散

假设有样本数为6个的训练集数字如下:

python机器学习之贝叶斯分类

现在假设来又来了一个人是症状为咳嗽的教师,那这位教师是患上感冒、发烧、鼻炎的概率分别是多少呢?这个问题可以用贝叶斯分类来解决,最后三个疾病哪个概率高,就把这个咳嗽的教师划为哪个类,实质就是分别求p(感冒|咳嗽*教师)和P(发烧 | 咳嗽 * 教师)

P(鼻炎 | 咳嗽 * 教师) 的概率;

假设各个类别相互独立:

python机器学习之贝叶斯分类

python机器学习之贝叶斯分类

 python机器学习之贝叶斯分类

 P(感冒)=3/6    P(发烧)=1/6     P(鼻炎)=2/6

 p(咳嗽) = 3/6   P(教师)= 2/6

 p(咳嗽 | 感冒) = 2/3   P(教师 | 感冒) = 1/3

python机器学习之贝叶斯分类

按以上方法可分别求  P(发烧 | 咳嗽 × 教师) 和P(鼻炎 |咳嗽 × 教师 )的概率;

2.分类属性连续

如果按上面的样本上加一个年龄的属性;因为年龄是连续,不能采用离散变量的方法计算概率。而且由于样本太少,所以也无法分成区间计算;这时,可以假设感冒、发烧、鼻炎分类的年龄都是正态分布,通过样本计算出均值和方差,也就是得到正态分布的密度函数;

python机器学习之贝叶斯分类

下面就以求P(年龄=15|感冒)下的概率为例说明:

   第一:求在感冒类下的年龄平均值  u=(15+48+12)/3=25

   第二:求在感冒类下年龄的方差 代入下面公司可求:方差=266

python机器学习之贝叶斯分类

   第三:把年龄=15 代入正太分布公式如下:参数代进去既可以求的P(age=15|感冒)的概率

python机器学习之贝叶斯分类

其他属性按离散方法可求;

四、概率值为0处理

假设有这种情况出现,在训练集上感冒的元祖有10个,有0个是孩子,有6个是学生,有4个教师;当分别求

      P(孩子|感冒) =0; P(学生|感冒)=6/10 ; P(教师|感冒)=4/10  ;出现了概率为0的现象,为了避免这个现象,在假设训练元祖数量大量的前提下,可以使用拉普拉斯估计法,把每个类型加1这样可求的分别概率是

      P(孩子|感冒) = 1/13  ; P(学生|感冒) = 7/13   ; P(教师|感冒)=4/13

 五、垃圾邮件贝叶斯分类案例

1.准备训练集数据

假设postingList为一个六个邮件内容,classVec=[0,1,0,1,0,1]为邮件类型,设1位垃圾邮件

def loadDataSet(): 
 postingList =[['my','dog','has',' flea','problems','help','please'], 
     ['mybe','not','take','him','to','dog','park','stupid'], 
     ['my','dalmation','is','so','cute','i','love','hime'], 
     ['stop','posting','stupid','worthless','garbage'], 
     ['mr','licks','ate','my','steak','how','to','stop','hime'], 
     ['quit','buying','worthless','dog','food','stupid','quit']] 
 classVec =[0,1,0,1,0,1] 
 return postingList,classVec 

2.根据所有的邮件内容创建一个所有单词集合

def createVocabList(dataSet): 
 vocabSet =set([]) 
 for document in dataSet: 
  vocabSet = vocabSet | set(document) 
 return list(vocabSet) 

测试后获取所有不重复单词的集合见下一共:

python机器学习之贝叶斯分类

3.根据2部所有不重复的单词集合对每个邮件内容向量化 

def bagOfWords2VecMN(vocabList,inputSet): 
 returnVec =[0]*len(vocabList) 
 for word in inputSet: 
  returnVec[vocabList.index(word)] +=1 
 return returnVec 

测试后可得如下,打印内容为向量化的六个邮件内容

python机器学习之贝叶斯分类

4.训练模型,此时就是分别求p(垃圾|文档) = p(垃圾)*p(文档|垃圾)/p(文档)

def trainNBO(trainMatrix,trainCategory): 
  numTrainDocs = len(trainMatrix) 
  numWords =len(trainMatrix[0]) 
  #计算p(垃圾)的概率 
  pAbusive = sum(trainCategory)/float(numTrainDocs) 
  #为了防止一个概率为0,假设都有一个 
  p0Num =ones(numWords); 
  p1Num = ones(numWords) 
  p0Denom =2.0;p1Denom=2.0; 
  for i in range(numTrainDocs): 
    if trainCategory[i] ==1: 
      p1Num +=trainMatrix[i] 
      p1Denom +=sum(trainMatrix[i]) 
    else: 
      p0Num +=trainMatrix[i] 
      p0Denom +=sum(trainMatrix[i]) 
  p1Vect = np.log((p1Num/p1Denom)) 
  p0Vect = np.log(p0Num/p0Denom) 
  return p0Vect,p1Vect,pAbusive 

对训练模型进行测试结果如下:

python机器学习之贝叶斯分类

5.定义分类方法

def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): 
  p1 =sum(vec2Classify * p1Vec) +math.log(pClass1) 
  p0 = sum(vec2Classify * p0Vec)+math.log(1.0-pClass1) 
  if p1>p0: 
    return 1 
  else: 
    return 0 

6.以上分类完成,下面就对其进行测试,测试方法如下:

def testingNB(): 
  listOPosts,ListClasses = loadDataSet(); 
  myVocabList = createVocabList(listOPosts) 
  trainMat=[] 
  for postinDoc in listOPosts: 
    trainMat.append(bagOfWords2VecMN(myVocabList,postinDoc)) 
  p0V,p1V,pAb =trainNBO(trainMat,ListClasses) 
  testEntry =['stupid','my','dalmation'] 
  thisDoc = array(bagOfWords2VecMN(myVocabList,testEntry)) 
  print testEntry,'classified as',classifyNB(thisDoc,p0V,p1V,pAb) 

结果如下:

python机器学习之贝叶斯分类

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。