where()的用法
首先强调一下,where()函数对于不同的输入,返回的只是不同的。
1当数组是一维数组时,返回的值是一维的索引,所以只有一组索引数组
2当数组是二维数组时,满足条件的数组值返回的是值的位置索引,因此会有两组索引数组来表示值的位置
例如
>b=np.arange(10) >b array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >np.where(b>5) (array([6, 7, 8, 9], dtype=int64),) >a=np.reshape(np.arange(20),(4,5)) >a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) >np.where(a>10) (array([2, 2, 2, 2, 3, 3, 3, 3, 3], dtype=int64), array([1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))
对numpy标准库里的解释做一个介绍:
numpy.where(condition[, x, y])
基于条件condition,返回值来自x或者y.
如果.
condition : 数组,bool值
When True, yield x, otherwise yield y.
x, y : array_like, 可选
x与y的shape要相同,当condition中的值是true时返回x对应位置的值,false是返回y的
out : ndarray or tuple of ndarrays
①如果参数有condition,x和y,它们三个参数的shape是相同的。那么,当condition中的值是true时返回x对应位置的值,false是返回y的。
②如果参数只有condition的话,返回值是condition中元素值为true的位置索引,切是以元组形式返回,元组的元素是ndarray数组,表示位置的索引
> np.where([[True, False], [True, True]], ... [[1, 2], [3, 4]], ... [[9, 8], [7, 6]]) array([[1, 8], [3, 4]]) > > np.where([[0, 1], [1, 0]]) (array([0, 1]), array([1, 0])) > > x = np.arange(9.).reshape(3, 3) > np.where( x > 5 ) (array([2, 2, 2]), array([0, 1, 2])) > x[np.where( x > 3.0 )] # Note: result is 1D. array([ 4., 5., 6., 7., 8.]) > np.where(x < 5, x, -1) # Note: broadcasting. array([[ 0., 1., 2.], [ 3., 4., -1.], [-1., -1., -1.]]) Find the indices of elements of x that are in goodvalues. > > goodvalues = [3, 4, 7] > ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape) > ix array([[False, False, False], [ True, True, False], [False, True, False]], dtype=bool) > np.where(ix) (array([1, 1, 2]), array([0, 1, 1]))
两种方法的示例代码
第一种用法
np.where(conditions,x,y)
if (condituons成立):
数组变x
else:
数组变y
import numpy as np ''' x = np.random.randn(4,4) print(np.where(x>0,2,-2)) #试试效果 xarr = np.array([1.1,1.2,1.3,1.4,1.5]) yarr = np.array([2.1,2.2,2.3,2.4,2.5]) zarr = np.array([True,False,True,True,False]) result = [(x if c else y) for x,y,c in zip(xarr,yarr,zarr)] print(result) #where()函数处理就相当于上面那种方案 result = np.where(zarr,xarr,yarr) print(result) ''' #发现个有趣的东西 # #处理2组数组 # #True and True = 0 # #True and False = 1 # #False and True = 2 # #False and False = 3 cond2 = np.array([True,False,True,False]) cond1 = np.array([True,True,False,False]) #第一种处理 太长太丑 result = [] for i in range(4): if (cond1[i] & cond2[i]): result.append(0); elif (cond1[i]): result.append(1); elif (cond2[i]): result.append(2); else : result.append(3); print(result) #第二种 直接where() 很快很方便 result = np.where(cond1 & cond2,0,np.where(cond1,1,np.where(cond2,2,3))) print(result) #第三种 更简便(好像这跟where()函数半毛钱的关系都没有 result = 1*(cond1 & -cond2)+2*(cond2 & -cond1)+3*(-(cond1 | cond2)) (没想到还可以这么表达吧) print(result)
第二种用法
where(conditions)
相当于给出数组的下标
x = np.arange(16) print(x[np.where(x>5)]) #输出:(array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=int64),) x = np.arange(16).reshape(-1,4) print(np.where(x>5)) #(array([1, 1, 2, 2, 2, 2, 3, 3, 3, 3], dtype=int64), array([2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64)) #注意这里是坐标是前面的一维的坐标,后面是二维的坐标
ix = np.array([[False, False, False], [ True, True, False], [False, True, False]], dtype=bool) print(np.where(ix)) #输出:(array([1, 1, 2], dtype=int64), array([0, 1, 1], dtype=int64))
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
更新日志
2024年11月18日
2024年11月18日
- 柏菲·胭花四乐《胭花四乐》限量开盘母带ORMCD[低速原抓WAV+CUE]
- 群星《监听耳机天碟》2018[WAV分轨][1G]
- 群星《娱协奖原创金曲合辑》滚石[WAV+CUE][1.1G]
- 罗大佑《美丽岛》2CD[WAV+CUE][1.1G]
- 言承旭.2009-多出来的自由【SONY】【WAV+CUE】
- 赤道.2000-精选2CD【ACM】【WAV+UCE】
- 许廷铿.2017-神奇之旅【华纳】【WAV+CUE】
- 李克勤《罪人》环球[WAV+CUE][1G]
- 陈粒2024《乌有乡地图》有此山文化[FLAC分轨][1G]
- 蔡依林《MYSELF》 奢华庆菌版 2CD[WAV+CUE][1.5G]
- 刘春美《心与心寻世界名曲中文版》新京文[低速原抓WAV+CUE]
- 朱逢博《蔷薇蔷薇处处开》[FLAC+CUE]
- 姚璎格2005《心在哭泣》龙韵[WAV分轨]
- 费玉清《费玉清收藏》 2CD 华纳[WAV+CUE][1G]
- 徐怀钰《LOVE》台湾首版[WAV+CUE][1G]