theano库是做deep learning重要的一部分,其最吸引人的地方之一是你给出符号化的公式之后,能自动生成导数。本文使用梯度下降的方法,进行数据拟合,现在把代码贴在下方
代码块
import numpy as np import theano.tensor as T import theano import time class Linear_Reg(object): def __init__(self,x): self.a = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'a') self.b = theano.shared(value = np.zeros((1,), dtype=theano.config.floatX),name = 'b') self.result = self.a * x + self.b self.params = [self.a,self.b] def msl(self,y): return T.mean((y - self.result)**2) def regrun(rate,data,labels): X = theano.shared(np.asarray(data, dtype=theano.config.floatX),borrow = True) Y = theano.shared(np.asarray(labels, dtype=theano.config.floatX),borrow = True) index = T.lscalar() #定义符号化的公式 x = T.dscalar('x') #定义符号化的公式 y = T.dscalar('y') #定义符号化的公式 reg = Linear_Reg(x = x) cost = reg.msl(y) a_g = T.grad(cost = cost,wrt = reg.a) #计算梯度 b_g = T.grad(cost = cost, wrt = reg.b) #计算梯度 updates=[(reg.a,reg.a - rate * a_g),(reg.b,reg.b - rate * b_g)] #更新参数 train_model = theano.function(inputs=[index], outputs = reg.msl(y),updates = updates,givens = {x:X[index], y:Y[index]}) done = True err = 0.0 count = 0 last = 0.0 start_time = time.clock() while done: #err_s = [train_model(i) for i in xrange(data.shape[0])] for i in xxx: err_s = [train_model(i) ] err = np.mean(err_s) #print err count = count + 1 if count > 10000 or err <0.1: done = False last = err end_time = time.clock() print 'Total time is :',end_time -start_time,' s' # 5.12s print 'last error :',err print 'a value : ',reg.a.get_value() # [ 2.92394467] print 'b value : ',reg.b.get_value() # [ 1.81334458] if __name__ == '__main__': rate = 0.01 data = np.linspace(1,10,10) labels = data * 3 + np.ones(data.shape[0],dtype=np.float64) +np.random.rand(data.shape[0]) regrun(rate,data,labels)
其基本思想是随机梯度下降。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年11月16日
2024年11月16日
- 第五街的士高《印度激情版》3CD [WAV+CUE][2.4G]
- 三国志8重制版哪个武将智力高 三国志8重制版智力武将排行一览
- 三国志8重制版哪个武将好 三国志8重制版武将排行一览
- 三国志8重制版武将图像怎么保存 三国志8重制版武将图像设置方法
- 何方.1990-我不是那种人【林杰唱片】【WAV+CUE】
- 张惠妹.1999-妹力新世纪2CD【丰华】【WAV+CUE】
- 邓丽欣.2006-FANTASY【金牌大风】【WAV+CUE】
- 饭制《黑神话》蜘蛛四妹手办
- 《燕云十六声》回应跑路:年内公测版本完成95%
- 网友发现国内版《双城之战》第二季有删减:亲亲环节没了!
- 邓丽君2024-《漫步人生路》头版限量编号MQA-UHQCD[WAV+CUE]
- SergeProkofievplaysProkofiev[Dutton][FLAC+CUE]
- 永恒英文金曲精选4《TheBestOfEverlastingFavouritesVol.4》[WAV+CUE]
- 群星《国风超有戏 第9期》[320K/MP3][13.63MB]
- 群星《国风超有戏 第9期》[FLAC/分轨][72.56MB]