较基础的SVM,后续会加上多分类以及高斯核,供大家参考。
Talk is cheap, show me the code
import tensorflow as tf from sklearn.base import BaseEstimator, ClassifierMixin import numpy as np class TFSVM(BaseEstimator, ClassifierMixin): def __init__(self, C = 1, kernel = 'linear', learning_rate = 0.01, training_epoch = 1000, display_step = 50, batch_size = 50, random_state = 42): #参数列表 self.svmC = C self.kernel = kernel self.learning_rate = learning_rate self.training_epoch = training_epoch self.display_step = display_step self.random_state = random_state self.batch_size = batch_size def reset_seed(self): #重置随机数 tf.set_random_seed(self.random_state) np.random.seed(self.random_state) def random_batch(self, X, y): #调用随机子集,实现mini-batch gradient descent indices = np.random.randint(1, X.shape[0], self.batch_size) X_batch = X[indices] y_batch = y[indices] return X_batch, y_batch def _build_graph(self, X_train, y_train): #创建计算图 self.reset_seed() n_instances, n_inputs = X_train.shape X = tf.placeholder(tf.float32, [None, n_inputs], name = 'X') y = tf.placeholder(tf.float32, [None, 1], name = 'y') with tf.name_scope('trainable_variables'): #决策边界的两个变量 W = tf.Variable(tf.truncated_normal(shape = [n_inputs, 1], stddev = 0.1), name = 'weights') b = tf.Variable(tf.truncated_normal([1]), name = 'bias') with tf.name_scope('training'): #算法核心 y_raw = tf.add(tf.matmul(X, W), b) l2_norm = tf.reduce_sum(tf.square(W)) hinge_loss = tf.reduce_mean(tf.maximum(tf.zeros(self.batch_size, 1), tf.subtract(1., tf.multiply(y_raw, y)))) svm_loss = tf.add(hinge_loss, tf.multiply(self.svmC, l2_norm)) training_op = tf.train.AdamOptimizer(learning_rate = self.learning_rate).minimize(svm_loss) with tf.name_scope('eval'): #正确率和预测 prediction_class = tf.sign(y_raw) correct_prediction = tf.equal(y, prediction_class) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) init = tf.global_variables_initializer() self._X = X; self._y = y self._loss = svm_loss; self._training_op = training_op self._accuracy = accuracy; self.init = init self._prediction_class = prediction_class self._W = W; self._b = b def _get_model_params(self): #获取模型的参数,以便存储 with self._graph.as_default(): gvars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) return {gvar.op.name: value for gvar, value in zip(gvars, self._session.run(gvars))} def _restore_model_params(self, model_params): #保存模型的参数 gvar_names = list(model_params.keys()) assign_ops = {gvar_name: self._graph.get_operation_by_name(gvar_name + '/Assign') for gvar_name in gvar_names} init_values = {gvar_name: assign_op.inputs[1] for gvar_name, assign_op in assign_ops.items()} feed_dict = {init_values[gvar_name]: model_params[gvar_name] for gvar_name in gvar_names} self._session.run(assign_ops, feed_dict = feed_dict) def fit(self, X, y, X_val = None, y_val = None): #fit函数,注意要输入验证集 n_batches = X.shape[0] // self.batch_size self._graph = tf.Graph() with self._graph.as_default(): self._build_graph(X, y) best_loss = np.infty best_accuracy = 0 best_params = None checks_without_progress = 0 max_checks_without_progress = 20 self._session = tf.Session(graph = self._graph) with self._session.as_default() as sess: self.init.run() for epoch in range(self.training_epoch): for batch_index in range(n_batches): X_batch, y_batch = self.random_batch(X, y) sess.run(self._training_op, feed_dict = {self._X:X_batch, self._y:y_batch}) loss_val, accuracy_val = sess.run([self._loss, self._accuracy], feed_dict = {self._X: X_val, self._y: y_val}) accuracy_train = self._accuracy.eval(feed_dict = {self._X: X_batch, self._y: y_batch}) if loss_val < best_loss: best_loss = loss_val best_params = self._get_model_params() checks_without_progress = 0 else: checks_without_progress += 1 if checks_without_progress > max_checks_without_progress: break if accuracy_val > best_accuracy: best_accuracy = accuracy_val #best_params = self._get_model_params() if epoch % self.display_step == 0: print('Epoch: {}\tValidaiton loss: {:.6f}\tValidation Accuracy: {:.4f}\tTraining Accuracy: {:.4f}' .format(epoch, loss_val, accuracy_val, accuracy_train)) print('Best Accuracy: {:.4f}\tBest Loss: {:.6f}'.format(best_accuracy, best_loss)) if best_params: self._restore_model_params(best_params) self._intercept = best_params['trainable_variables/weights'] self._bias = best_params['trainable_variables/bias'] return self def predict(self, X): with self._session.as_default() as sess: return self._prediction_class.eval(feed_dict = {self._X: X}) def _intercept(self): return self._intercept def _bias(self): return self._bias
实际运行效果如下(以Iris数据集为样本):
画出决策边界来看看:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2024年11月16日
2024年11月16日
- 罗大佑1982《之乎者也》无法盗版的青春套装版 [WAV+CUE][1G]
- 曾庆瑜1989-款款柔情[日本东芝版][WAV+CUE]
- Scelsi-IntegraledesquatuorsacordesetTrioacordes-QuatuorMolinari(2024)[24bit-WAV]
- 房东的猫2017-房东的猫[科文音像][WAV+CUE]
- 杨乃文.2016-离心力(引进版)【亚神音乐】【WAV+CUE】
- 群星.2024-珠帘玉幕影视原声带【TME】【FLAC分轨】
- 芝麻龙眼.2008-光阴隧道民歌记录3CD【乡城】【WAV+CUE】
- 谭艳《再度重相逢HQII》头版限量[低速原抓WAV+CUE][549M]
- ABC唱片《蔡琴三十周年纪念版》6N纯银镀膜 [WAV+CUE][1.1G]
- 海来阿木《西楼情歌》开盘母带[WAV+CUE][1.1G]
- TheGesualdoSix-QueenofHeartsLamentsandSongsofRegretforQueensTerrestrialandCele
- 王建杰2011-荣华富贵[喜玛拉雅][WAV+CUE]
- 孙悦2024-时光音乐会[金蜂][WAV+CUE]
- 秦宇子.2020-#YUZI【海蝶】【FLAC分轨】
- 苏有朋.1994-这般发生【华纳】【WAV+CUE】