在处理数据时,经常需要对数据分组计算均值或者计数,在Microsoft Excel中,可以通过透视表轻易实现简单的分组运算。而对于更加复杂的分组运算,Python中pandas包可以帮助我们实现。

1 数据

首先引入几个重要的包:

import pandas as pd
import numpy as np
from pandas import DataFrame,Series

通过代码构造数据集:

data=DataFrame({'key1':['a','b','c','a','c','a','b','a','c','a','b','c'],'key2':['one','two','three','two','one','one','three','one','two','three','one','two'],'num1':np.random.rand(12),'num2':np.random.randn(12)})

得到数据集如下:

data
 key1 key2  num1  num2
0 a one 0.268705 0.084091
1 b two 0.876707 0.217794
2 c three 0.229999 0.574402
3 a two 0.707990 -1.444415
4 c one 0.786064 0.343244
5 a one 0.587273 1.212391
6 b three 0.927396 1.505372
7 a one 0.295271 -0.497633
8 c two 0.292721 0.098814
9 a three 0.369788 -1.157426

2 交叉表—分类计数

按照不同类进行计数统计是最常见透视功能,可以通

(1)crosstab

#函数:
crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins=False, dropna=True, normalize=False)

crosstab的index和columns是必须要指定复制的参数:

pd.crosstab(data.key1,data.key2)

结果如下:

key2 one three two
key1     
a  3  1 1
b  0  1 1
c  1  1 1

想要在边框处增加汇总项可以指定margin的值为True:

pd.crosstab(data.key1,data.key2,margins=True)

结果:

key2 one three two All
key1      
a  3  1 1 5
b  1  1 1 3
c  1  1 2 4
All  5  3 4 12

(2)pivot_table

函数:

pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

使用pivot_table函数同样可以实现,运算函数默认值aggfunc='mean',指定为aggfunc='count'即可:

data.pivot_table('num1',index='key1',columns='key2',aggfunc='count')

结果相同:

key2 one three two
key1     
a  3  1 1
b  1  1 1
c  1  1 2

(3)groupby

通过groupby相对来说会更加复杂,首先需要对data按照key1和key2进行聚类,然后进行count运算,再将key2的index重塑为columns:

data.groupby(['key1','key2'])['num1'].count().unstack()

结果:

key2 one three two
key1     
a  3  1 1
b  1  1 1
c  1  1 2

3 其它透视表运算

(1)pivot_table

pivot_table(data, values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=True, margins_name='All')

要进行何种运算,只需要指定aggfunc即可。

默认计算均值:

data.pivot_table(index='key1',columns='key2')

out:

   num1       num2     
key2  one  three  two  one  three  two
key1               
a  0.193332 0.705657 0.203155 -0.165749 2.398164 -1.293595
b  0.167947 0.204545 0.661460 0.555850 -0.522528 0.143530
c  0.496993 0.033673 0.206028 -0.115093 0.024650 0.077726

分类汇总呢并求和:

data.pivot_table(index='key1',columns='key2',aggfunc='sum')

结果:

   num1       num2     
key2  one  three  two  one  three  two
key1               
a  0.579996 0.705657 0.203155 -0.497246 2.398164 -1.293595
b  0.167947 0.204545 0.661460 0.555850 -0.522528 0.143530
c  0.496993 0.033673 0.412055 -0.115093 0.024650 0.155452

也可以使用其它自定义函数:

#定义一个最大值减最小值的函数
def max_min (group):
 return group.max()-group.min()
data.pivot_table(index='key1',columns='key2',aggfunc=max_min)

结果:

   num1     num2    
key2  one three two  one three  two
key1             
a  0.179266 0.0 0.000 3.109405 0.0 0.000000
b  0.000000 0.0 0.000 0.000000 0.0 0.000000
c  0.000000 0.0 0.177 0.000000 0.0 1.609466

(2)通过groupby

普通的函数如mean,sum可以直接应用:

data.groupby(['key1','key2']).mean().unstack()

返回结果:

   num1       num2     
key2  one  three  two  one  three  two
key1               
a  0.193332 0.705657 0.203155 -0.165749 2.398164 -1.293595
b  0.167947 0.204545 0.661460 0.555850 -0.522528 0.143530
c  0.496993 0.033673 0.206028 -0.115093 0.024650 0.077726

以上这篇用Python实现数据的透视表的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。