认识模块
什么是模块?
常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。
但其实import加载的模块分为四个通用类别:
1 使用python编写的代码(.py文件)
2 已被编译为共享库或DLL的C或C++扩展
3 包好一组模块的包
4 使用C编写并链接到python解释器的内置模块
为何要使用模块?
如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。
随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,
常用模块
1. collections模块
在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。
1.namedtuple: 生成可以使用名字来访问元素内容的tuple
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:
p = (1, 2)
但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。
这时,namedtuple就派上了用场:
用法:namedtuple('名称', [属性list]):
> from collections import namedtuple > Point = namedtuple('Point', ['x', 'y']) > p = Point(1, 2) > p.x 1 > p.y 2
类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:
from collections import namedtuple Cirle = namedtuple("Cirle",['x','y','z']) c = Cirle(4,5,6) print(c.x,c.y,c.z) OutPut: 4 5 6
2. deque
使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。
deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:
> from collections import deque > q = deque(['a', 'b', 'c']) > q.append('x') > q.appendleft('y') > q deque(['y', 'a', 'b', 'c', 'x'])
deque除了实现list的append()和pop()外,还支持appendleft()和popleft(),这样就可以非常高效地往头部添加或删除元素。
from collections import deque dq = deque([1,2]) dq.append('a') # 从后面放数据 [1,2,'a'] dq.appendleft('b') # 从前面放数据 ['b',1,2,'a'] dq.insert(2,3) #['b',1,3,2,'a'] print(dq.pop()) # 从后面取数据 print(dq.pop()) # 从后面取数据 print(dq.popleft()) # 从前面取数据 print(dq) Output: a 2 b deque([1, 3])
3. OrderedDict
使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。
如果要保持Key的顺序,可以用OrderedDict:
> from collections import OrderedDict > d = dict([('a', 1), ('b', 2), ('c', 3)]) > d # dict的Key是无序的 {'a': 1, 'c': 3, 'b': 2} > od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) > od # OrderedDict的Key是有序的 OrderedDict([('a', 1), ('b', 2), ('c', 3)]) #有序字典 from collections import OrderedDict od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) print(od) # OrderedDict的Key是有序的 print(od['a']) for k in od: print(k) OutPut: OrderedDict([('a', 1), ('b', 2), ('c', 3)]) 1 a b c
注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序
4. defaultdict
使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict:
> from collections import defaultdict > dd = defaultdict(lambda: 'N/A') > dd['key1'] = 'abc' > dd['key1'] # key1存在 'abc' > dd['key2'] # key2不存在,返回默认值 'N/A'
5. Counter
Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。
c = Counter('abcdeabcdabcaba') print c 输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
创建
下面的代码说明了Counter类创建的四种方法:
Counter类的创建 :
> c = Counter() # 创建一个空的Counter类 > c = Counter('gallahad') # 从一个可iterable对象(list、tuple、dict、字符串等)创建 > c = Counter({'a': 4, 'b': 2}) # 从一个字典对象创建 > c = Counter(a=4, b=2) # 从一组键值对创建
计数值的访问与缺失的键
当所访问的键不存在时,返回0,而不是KeyError;否则返回它的计数。
计数值的访问
> c = Counter("abcdefgab") > c["a"] 2 > c["c"] 1 > c["h"] 0
计数器的更新(update和subtract)
可以使用一个iterable对象或者另一个Counter对象来更新键值。
计数器的更新包括增加和减少两种。其中,增加使用update()方法:
计数器的更新(update)
> c = Counter('which') > c.update('witch') # 使用另一个iterable对象更新 > c['h'] 3 > d = Counter('watch') > c.update(d) # 使用另一个Counter对象更新 > c['h'] 4
减少则使用subtract()方法:
计数器的更新(subtract)
> c = Counter('which') > c.subtract('witch') # 使用另一个iterable对象更新 > c['h'] 1 > d = Counter('watch') > c.subtract(d) # 使用另一个Counter对象更新 > c['a'] -1
键的修改和删除
当计数值为0时,并不意味着元素被删除,删除元素应当使用del。
> c = Counter("abcdcba") > c Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1}) > c["b"] = 0 > c Counter({'a': 2, 'c': 2, 'd': 1, 'b': 0}) > del c["a"] > c Counter({'c': 2, 'b': 2, 'd': 1})
elements()
返回一个迭代器。元素被重复了多少次,在该迭代器中就包含多少个该元素。元素排列无确定顺序,个数小于1的元素不被包含。
elements()方法
> c = Counter(a=4, b=2, c=0, d=-2) > list(c.elements()) ['a', 'a', 'a', 'a', 'b', 'b']
most_common([n])
返回一个TopN列表。如果n没有被指定,则返回所有元素。当多个元素计数值相同时,排列是无确定顺序的。
most_common()方法
> c = Counter('abracadabra') > c.most_common() [('a', 5), ('r', 2), ('b', 2), ('c', 1), ('d', 1)] > c.most_common(3) [('a', 5), ('r', 2), ('b', 2)]
浅拷贝copy
> c = Counter("abcdcba") > c Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1}) > d = c.copy() > d Counter({'a': 2, 'c': 2, 'b': 2, 'd': 1})
算术和集合操作
+、-、&、|操作也可以用于Counter。其中&和|操作分别返回两个Counter对象各元素的最小值和最大值。需要注意的是,得到的Counter对象将删除小于1的元素。
Counter对象的算术和集合操作
> c = Counter(a=3, b=1) > d = Counter(a=1, b=2) > c + d # c[x] + d[x] Counter({'a': 4, 'b': 3}) > c - d # subtract(只保留正数计数的元素) Counter({'a': 2}) > c & d # 交集: min(c[x], d[x]) Counter({'a': 1, 'b': 1}) > c | d # 并集: max(c[x], d[x]) Counter({'a': 3, 'b': 2})
其他常用操作
下面是一些Counter类的常用操作,来源于Python官方文档
Counter类常用操作
sum(c.values()) # 所有计数的总数 c.clear() # 重置Counter对象,注意不是删除 list(c) # 将c中的键转为列表 set(c) # 将c中的键转为set dict(c) # 将c中的键值对转为字典 c.items() # 转为(elem, cnt)格式的列表 Counter(dict(list_of_pairs)) # 从(elem, cnt)格式的列表转换为Counter类对象 c.most_common()[:-n:-1] # 取出计数最少的n个元素 c += Counter() # 移除0和负值
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 群星《说唱梦工厂 第11期》[FLAC/分轨][343.07MB]
- 群星《闪光的夏天 第5期》[320K/MP3][79.35MB]
- 秀兰玛雅.1999-友情人【大旗】【WAV+CUE】
- 小米.2020-我想在城市里当一个乡下人【滚石】【FLAC分轨】
- 齐豫.2003-THE.UNHEARD.OF.CHYI.3CD【苏活音乐】【WAV+CUE】
- 黄乙玲1986-讲什么山盟海誓[日本东芝版][WAV+CUE]
- 曾庆瑜1991-柔情陷阱[台湾派森东芝版][WAV+CUE]
- 陈建江《享受男声》DTS-ES6.1【WAV】
- 群星《闪光的夏天 第5期》[FLAC/分轨][392.38MB]
- 徐小凤《三洋母带》1:1母盘直刻[WAV+CUE][981M]
- 王菲1995《菲靡靡之音》[香港首版][WAV+CUE][1G]
- 《双城之战》主题小游戏现已上线 扮演金克丝探索秘密基地
- 《霍格沃茨之遗》PS5Pro画面对比:光追性能显著提升
- 《怪猎荒野》PS5Pro主机版对比:B测性能都不稳定
- 黄宝欣.1992-黄宝欣金装精选2CD【HOMERUN】【WAV+CUE】