1.用于简单的对象检测、跟踪

2.简单前背景分割

#encoding:utf-8
#黄色检测
import numpy as np
import argparse
import cv2
image = cv2.imread('huang.png')
color = [
 ([0, 70, 70], [100, 255, 255])#黄色范围~这个是我自己试验的范围,可根据实际情况自行调整~注意:数值按[b,g,r]排布
]
#如果color中定义了几种颜色区间,都可以分割出来 
for (lower, upper) in color:
 # 创建NumPy数组
 lower = np.array(lower, dtype = "uint8")#颜色下限
 upper = np.array(upper, dtype = "uint8")#颜色上限
 
 # 根据阈值找到对应颜色
 mask = cv2.inRange(image, lower, upper)
 output = cv2.bitwise_and(image, image, mask = mask)
 
 # 展示图片
 cv2.imshow("images", np.hstack([image, output]))
 cv2.waitKey(0)

python-opencv颜色提取分割方法

以上这篇python-opencv颜色提取分割方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com