研修课上讲了两个例子,融合一下。

主要演示大致的过程:

导入->拆分->训练->模型报告

以及几个重要问题:

①标签二值化

②网格搜索法调参

③k折交叉验证

④增加噪声特征(之前涉及)

from sklearn import datasets
#从cross_validation导入会出现warning,说已弃用
from sklearn.model_selection import train-test_split
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
import sklearn.exceptioins
#导入鸢尾花数据集
iris = datasets.load_iris()
#将数据集拆分为训练集和测试集各一半
#其中X为数据特征(花萼、花瓣的高度宽度),为150*4的矩阵
#Y为鸢尾花种类(0, 1, 2三种),为150*1矩阵
#如果使用标签二值化, 将0, 1, 2表示为100 010 001
#使用y.label_binarize(y, classes[0, 1, 2]),变为150*3矩阵
X_train, X_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.5, random_state=0)
#set the parameters by cross_validation
turn_parameters = [{'kernel' : ['rbf', 'gamma' : [1e-3, 1e - 4, 'C':[1,10,100,1000]}, 
{'kernel':['linear'], 'C':[1,10,100,1000]}
]
#clf分离器
#使用网格搜索法调超参数
#训练集做5折交叉验证
clf = GridSearchCV(SVC(C=1), turned_parameters, cv=5, scoring='%s_weighted' % score)
#用前一半train数据再做5折交叉验证
#因为之前的train_test_split已经分割为2份了
#fit-拟合
clf.fit(X_train, y_train)
#超参数
print(clf.best_params_)
#得分
for params, mean_score, scores in clf.gird_scores_:
 print("%.3f (+/-%.0.03f) for %r" % (mean_score, scores.std()*1.96,params))
#分类报告
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))

以上这篇对sklearn的使用之数据集的拆分与训练详解(python3.6)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。