最近在工作中,遇到了数据合并、连接的问题,故整理如下,供需要者参考~
一、concat:沿着一条轴,将多个对象堆叠到一起
concat方法相当于数据库中的全连接(union all),它不仅可以指定连接的方式(outer join或inner join)还可以指定按照某个轴进行连接。与数据库不同的是,它不会去重,但是可以使用drop_duplicates方法达到去重的效果。
concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True):
pd.concat()只是单纯的把两个表拼接在一起,参数axis是关键,它用于指定是行还是列,axis默认是0。
当axis=0时,pd.concat([obj1, obj2])的效果与obj1.append(obj2)是相同的;当axis=1时,pd.concat([obj1, obj2], axis=1)的效果与pd.merge(obj1, obj2, left_index=True, right_index=True, how='outer')是相同的。
merge方法的介绍请参看下文。
参数介绍:
objs:需要连接的对象集合,一般是列表或字典;
axis:连接轴向;
join:参数为‘outer'或‘inner';
join_axes=[]:指定自定义的索引;
keys=[]:创建层次化索引;
ignore_index=True:重建索引
举例:
df1=DataFrame(np.random.randn(3,4),columns=['a','b','c','d']) df2=DataFrame(np.random.randn(2,3),columns=['b','d','a']) pd.concat([df1,df2]) a b c d 0 -0.848557 -1.163877 -0.306148 -1.163944 1 1.358759 1.159369 -0.532110 2.183934 2 0.532117 0.788350 0.703752 -2.620643 0 -0.316156 -0.707832 NaN -0.416589 1 0.406830 1.345932 NaN -1.874817 pd.concat([df1,df2],ignore_index=True) a b c d 0 -0.848557 -1.163877 -0.306148 -1.163944 1 1.358759 1.159369 -0.532110 2.183934 2 0.532117 0.788350 0.703752 -2.620643 3 -0.316156 -0.707832 NaN -0.416589 4 0.406830 1.345932 NaN -1.874817
二、merge:通过键拼接列
类似于关系型数据库的连接方式,可以根据一个或多个键将不同的DatFrame连接起来。该函数的典型应用场景是,针对同一个主键存在两张不同字段的表,根据主键整合到一张表里面。
merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=True, suffixes=('_x', '_y'), copy=True, indicator=False)
参数介绍:
left和right:两个不同的DataFrame;
how:连接方式,有inner、left、right、outer,默认为inner;
on:指的是用于连接的列索引名称,必须存在于左右两个DataFrame中,如果没有指定且其他参数也没有指定,则以两个DataFrame列名交集作为连接键;
left_on:左侧DataFrame中用于连接键的列名,这个参数左右列名不同但代表的含义相同时非常的有用;
right_on:右侧DataFrame中用于连接键的列名;
left_index:使用左侧DataFrame中的行索引作为连接键;
right_index:使用右侧DataFrame中的行索引作为连接键;
sort:默认为True,将合并的数据进行排序,设置为False可以提高性能;
suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为('_x', '_y');
copy:默认为True,总是将数据复制到数据结构中,设置为False可以提高性能;
indicator:显示合并数据中数据的来源情况
举例:
# 1.默认以重叠的列名当做连接键。 df1=DataFrame({'key':['a','b','b'],'data1':range(3)}) df2=DataFrame({'key':['a','b','c'],'data2':range(3)}) pd.merge(df1,df2) #没有指定连接键,默认用重叠列名,没有指定连接方式 data1 key data2 0 0 a 0 1 1 b 1 2 2 b 1 # 2.默认做inner连接(取key的交集),连接方式还有(left,right,outer),制定连接方式加参数:how='' pd.merge(df2,df1) data2 key data1 0 0 a 0 1 1 b 1 2 1 b 2 #默认内连接,可以看见c没有连接上。 pd.merge(df2,df1,how='left') #通过how,指定连接方式 data2 key data1 0 0 a 0 1 1 b 1 2 1 b 2 3 2 c NaN # 3.多键连接时将连接键组成列表传入,例:pd.merge(df1,df2,on=['key1','key2'] right=DataFrame({'key1':['foo','foo','bar','bar'], 'key2':['one','one','one','two'], 'lval':[4,5,6,7]}) left=DataFrame({'key1':['foo','foo','bar'], 'key2':['one','two','one'], 'lval':[1,2,3]}) right=DataFrame({'key1':['foo','foo','bar','bar'], 'key2':['one','one','one','two'], 'lval':[4,5,6,7]}) pd.merge(left,right,on=['key1','key2'],how='outer') #传出数组 key1 key2 lval_x lval_y 0 foo one 1 4 1 foo one 1 5 2 foo two 2 NaN 3 bar one 3 6 4 bar two NaN 7 # 4.如果两个对象的列名不同,可以分别指定,例:pd.merge(df1,df2,left_on='lkey',right_on='rkey') df3=DataFrame({'key3':['foo','foo','bar','bar'], #将上面的right的key 改了名字 'key4':['one','one','one','two'], 'lval':[4,5,6,7]}) pd.merge(left,df3,left_on='key1',right_on='key3') #键名不同的连接 key1 key2 lval_x key3 key4 lval_y 0 foo one 1 foo one 4 1 foo one 1 foo one 5 2 foo two 2 foo one 4 3 foo two 2 foo one 5 4 bar one 3 bar one 6 5 bar one 3 bar two 7
三、join:主要用于索引上的合并
join(self, other, on=None, how='left', lsuffix='', rsuffix='',sort=False):
其参数的意义与merge方法中的参数意义基本一样。
以上这篇在Pandas中DataFrame数据合并,连接(concat,merge,join)的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 中国武警男声合唱团《辉煌之声1天路》[DTS-WAV分轨]
- 紫薇《旧曲新韵》[320K/MP3][175.29MB]
- 紫薇《旧曲新韵》[FLAC/分轨][550.18MB]
- 周深《反深代词》[先听版][320K/MP3][72.71MB]
- 李佳薇.2024-会发光的【黑籁音乐】【FLAC分轨】
- 后弦.2012-很有爱【天浩盛世】【WAV+CUE】
- 林俊吉.2012-将你惜命命【美华】【WAV+CUE】
- 晓雅《分享》DTS-WAV
- 黑鸭子2008-飞歌[首版][WAV+CUE]
- 黄乙玲1989-水泼落地难收回[日本天龙版][WAV+CUE]
- 周深《反深代词》[先听版][FLAC/分轨][310.97MB]
- 姜育恒1984《什么时候·串起又散落》台湾复刻版[WAV+CUE][1G]
- 那英《如今》引进版[WAV+CUE][1G]
- 蔡幸娟.1991-真的让我爱你吗【飞碟】【WAV+CUE】
- 群星.2024-好团圆电视剧原声带【TME】【FLAC分轨】