本文实例讲述了Python mutiprocessing多线程池pool操作。分享给大家供大家参考,具体如下:

python — mutiprocessing 多线程 pool

Python mutiprocessing多线程池pool操作示例

脚本代码:

root@72132server:~/python/multiprocess# ls
multiprocess_pool.py multprocess.py
root@72132server:~/python/multiprocess# cat multiprocess_pool.py
#!/usr/bin/python
# --*-- coding:utf-8 --*--
import multiprocessing
import sys,os,time
result = []#把运行的进程池放入,空的列表
def run(msg):#定义正在处理进程编号数的函数功能
  print 'threading number:%s %s' %(msg,os.getpid())#打印正在处理的进程编号数与对应的系统进程号
  time.sleep(2)
p = multiprocessing.Pool(processes = 25)#绑定事例,同时执行25个线程
for i in range(100):
  result.append(p.apply_async(run,('%s' %i,)))#异步传输正在运行的进程数字号码
p.close()#关闭正在运行的25个进程
#p.join()
for res in result:#获取运行结果
  res.get(timeout=5)
root@72132server:~/python/multiprocess#

运行情况:

1)脚本运行

root@72132server:~/python/multiprocess# python multiprocess_pool.py
threading number:0 27912
threading number:1 27915
threading number:2 27913
threading number:3 27916
threading number:4 27917
threading number:5 27918
threading number:6 27919
threading number:7 27920
threading number:8 27922
threading number:9 27923
threading number:10 27924
threading number:11 27925
threading number:12 27926
threading number:13 27927
threading number:14 27928
threading number:15 27914
threading number:16 27929
threading number:17 27921
threading number:18 27930
threading number:19 27931
threading number:20 27932
threading number:21 27934
threading number:22 27935
threading number:23 27936
threading number:24 27933
threading number:25 27912
threading number:26 27915
threading number:27 27917
threading number:28 27918
threading number:29 27916
threading number:30 27913
threading number:31 27922
threading number:32 27919
threading number:33 27920
threading number:34 27923
threading number:35 27924
threading number:36 27925
threading number:37 27927
threading number:38 27921
threading number:39 27930
threading number:40 27932
threading number:41 27934
threading number:42 27935
threading number:43 27926
threading number:44 27931
threading number:45 27928
threading number:46 27929
threading number:47 27914
threading number:48 27933
threading number:49 27936
threading number:50 27912
threading number:51 27915

2)进程查看(25个进程同时运行)

root@72132server:~/python/multiprocess# ps -ef | grep multi
root   27905 23930 0 22:39 pts/3  00:00:00 grep multi
root@72132server:~/python/multiprocess# ps -ef | grep multi
root   27911 20609 1 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27912 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27913 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27914 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27915 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27916 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27917 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27918 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27919 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27920 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27921 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27922 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27923 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27924 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27925 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27926 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27927 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27928 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27929 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27930 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27931 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27932 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27933 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27934 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27935 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27936 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27941 23930 0 22:39 pts/3  00:00:00 grep multi
root@72132server:~/python/multiprocess# ps -ef | grep multi
root   27911 20609 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27912 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27913 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27914 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27915 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27916 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27917 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27918 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27919 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27920 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27921 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27922 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27923 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27924 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27925 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27926 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27927 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27928 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27929 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27930 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27931 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27932 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27933 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27934 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27935 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27936 27911 0 22:39 pts/1  00:00:00 python multiprocess_pool.py
root   27943 23930 0 22:39 pts/3  00:00:00 grep multi
root@72132server:~/python/multiprocess#

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》、《Python+MySQL数据库程序设计入门教程》及《Python常见数据库操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。