通过百度云API接口抽取得到产品评论的观点,也掠去了很多评论中无用的内容以及符号,为后续进行文本主题挖掘或者规则的提取提供基础。

工具

1、百度云账号,申请应用接口(自然语言处理)

2、python3.5

以下是百度接口提供的说明:

对python借助百度云API对评论进行观点抽取的方法详解

对python借助百度云API对评论进行观点抽取的方法详解

我们使用到的可选值是13,kindle属于3C产品。

对python借助百度云API对评论进行观点抽取的方法详解

下面是代码示例:

from aip import AipNlp
import csv
import pandas as pd
from pandas.core.frame import DataFrame

""" 你的 APPID AK SK """
APP_ID = '********'
API_KEY = '********'
SECRET_KEY = '********'
client = AipNlp(APP_ID, API_KEY, SECRET_KEY)

# 导入评论数据文件,并找到第13列(12行)的评论内容提取出来
def output():
 urls = []
 with open('E:\\tb_iphone8.csv', "r") as f:
  reader = csv.reader(f)
  for row in reader:
   urls.append(row[12])
 return urls

# 通过百度云提供的API对评论观点进行提取
def commentTag():
 x = output()
 all={}
 abst=''
 for i in range(10560):
  text=x[i]
  """ 调用评论观点抽取 """
  """ 如果有可选参数 """
  # 可选参数为13表示利用了3C产品的语料库
  options = {}
  options["type"] = 13
  """ 带参数调用评论观点抽取 """
  result=client.commentTag(text, options)
  print(result)
  if "error_code" in result.keys():
   abst+=''
   all['abstract'] = abst
  else:
   data = result['items']
   items = data[0]
   abst += items['abstract']
   all['abstract'] = abst
 return abst

if __name__ == '__main__':
 ALL=commentTag()
 print(ALL)

得到的结果如下:

对python借助百度云API对评论进行观点抽取的方法详解

可以看到,现在抽取出来的评论部分内容都是具有一定观点倾向的,大部分没有什么含义的评论内容已经被除去,这对后面的分析有一定的帮助。

以上这篇对python借助百度云API对评论进行观点抽取的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。