ARIMA模型
ARIMA模型的全称是自回归移动平均模型,是用来预测时间序列的一种常用的统计模型,一般记作ARIMA(p,d,q)。
ARIMA的适应情况
ARIMA模型相对来说比较简单易用。在应用ARIMA模型时,要保证以下几点:
- 时间序列数据是相对稳定的,总体基本不存在一定的上升或者下降趋势,如果不稳定可以通过差分的方式来使其变稳定。
- 非线性关系处理不好,只能处理线性关系
判断时序数据稳定
基本判断方法:稳定的数据,总体上是没有上升和下降的趋势的,是没有周期性的,方差趋向于一个稳定的值。
ARIMA数学表达
ARIMA(p,d,q),其中p是数据本身的滞后数,是AR模型即自回归模型中的参数。d是时间序列数据需要几次差分才能得到稳定的数据。q是预测误差的滞后数,是MA模型即滑动平均模型中的参数。
a) p参数与AR模型
AR模型描述的是当前值与历史值之间的关系,滞后p阶的AR模型可以表示为:
其中u是常数,et代表误差。
b) q参数与MA模型
MA模型描述的是当前值与自回归部分的误差累计的关系,滞后q阶的MA模型可以表示为:
其中u是常数,et代表误差。
c) d参数与差分
一阶差分:
二阶差分:
d) ARIMA = AR+MA
ARIMA模型使用步骤
- 获取时间序列数据
- 观测数据是否为平稳的,否则进行差分,化为平稳的时序数据,确定d
- 通过观察自相关系数ACF与偏自相关系数PACF确定q和p
- 得到p,d,q后使用ARIMA(p,d,q)进行训练预测
Python调用ARIMA
#差分处理 diff_series = diff_series.diff(1)#一阶 diff_series2 = diff_series.diff(1)#二阶 #ACF与PACF #从scipy导入包 from scipy import stats import statsmodels.api as sm #画出acf和pacf sm.graphics.tsa.plot_acf(diff_series) sm.graphics.tsa.plot_pacf(diff_series) #arima模型 from statsmodels.tsa.arima_model import ARIMA model = ARIMA(train_data,order=(p,d,q),freq='')#freq是频率,根据数据填写 arima = model.fit()#训练 print(arima) pred = arima.predict(start='',end='')#预测
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
更新日志
2024年11月15日
2024年11月15日
- 炉石传说月初最强卡组有哪些 2024月初最强上分卡组推荐
- 狼人杀亮相原生鸿蒙之夜 假面科技强势登陆华为生态
- 12小时光线挑战!AI画质专家才是大平层首选
- 2024游戏IP报告:1~9月规模1960亿 68%用户愿为之付费
- 群星.2024-今夜一起为爱鼓掌电视剧原声带【相信音乐】【FLAC分轨】
- BIGFOUR.2013-大家利事【寰亚】【WAV+CUE】
- 李美凤.1992-情深透全情歌集【EMI百代】【WAV+CUE】
- 田震2024-《时光音乐会》[金峰][WAV+CUE]
- 群星《监听天碟3》[LECD]限量版[WAV+CUE]
- 心妤《声如夏花HQ》头版限量编号[WAV+CUE]
- 群星《摇滚五杰》[低速原抓WAV+CUE][1.1G]
- 群星 《2024好听新歌30》十倍音质 U盘音乐 [WAV+分轨]
- 群星《试音草原·女声篇》经典蒙古民歌[WAV+CUE][1G]
- 陈慧娴《永远是你的朋友》头版限量编号MQA-UHQCD2024[低速原抓WAV+CUE]
- 曼丽·女人三十《如果·爱》限量1:1母盘直刻[低速原抓WAV+CUE]