1. Series
Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index)。
1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1)。
# 引入Series和DataFrame In [16]: from pandas import Series,DataFrame In [17]: import pandas as pd In [18]: ser1 = Series([1,2,3,4]) In [19]: ser1 Out[19]: 0 1 1 2 2 3 3 4 dtype: int64
1.2 当要生成一个指定索引的Series 时候,可以这样:
# 给index指定一个list In [23]: ser2 = Series(range(4),index = ["a","b","c","d"]) In [24]: ser2 Out[24]: a 0 b 1 c 2 d 3 dtype: int64
1.3 也可以通过字典来创建Series对象
In [45]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000} In [46]: ser3 = Series(sdata) # 可以发现,用字典创建的Series是按index有序的 In [47]: ser3 Out[47]: Ohio 35000 Oregon 16000 Texas 71000 Utah 5000 dtype: int64
在用字典生成Series的时候,也可以指定索引,当索引中值对应的字典中的值不存在的时候,则此索引的值标记为Missing,NA,并且可以通过函数(pandas.isnull,pandas.notnull)来确定哪些索引对应的值是没有的。
In [48]: states = ['California', 'Ohio', 'Oregon', 'Texas'] In [49]: ser3 = Series(sdata,index = states) In [50]: ser3 Out[50]: California NaN Ohio 35000.0 Oregon 16000.0 Texas 71000.0 dtype: float64 # 判断哪些值为空 In [51]: pd.isnull(ser3) Out[51]: California True Ohio False Oregon False Texas False dtype: bool In [52]: pd.notnull(ser3) Out[52]: California False Ohio True Oregon True Texas True dtype: bool
1.4 访问Series中的元素和索引:
# 访问索引为"a"的元素 In [25]: ser2["a"] Out[25]: 0 # 访问索引为"a","c"的元素 In [26]: ser2[["a","c"]] Out[26]: a 0 c 2 dtype: int64 # 获取所有的值 In [27]: ser2.values Out[27]: array([0, 1, 2, 3]) # 获取所有的索引 In [28]: ser2.index Out[28]: Index([u'a', u'b', u'c', u'd'], dtype='object')
1.5 简单运算
在pandas的Series中,会保留NumPy的数组操作(用布尔数组过滤数据,标量乘法,以及使用数学函数),并同时保持引用的使用
In [34]: ser2[ser2 > 2] Out[34]: a 64 d 3 dtype: int64 In [35]: ser2 * 2 Out[35]: a 128 b 2 c 4 d 6 dtype: int64 In [36]: np.exp(ser2) Out[36]: a 6.235149e+27 b 2.718282e+00 c 7.389056e+00 d 2.008554e+01 dtype: float64
1.6 Series的自动对齐
Series的一个重要功能就是自动对齐(不明觉厉),看看例子就明白了。 差不多就是不同Series对象运算的时候根据其索引进行匹配计算。
# ser3 的内容 In [60]: ser3 Out[60]: Ohio 35000 Oregon 16000 Texas 71000 Utah 5000 dtype: int64 # ser4 的内容 In [61]: ser4 Out[61]: California NaN Ohio 35000.0 Oregon 16000.0 Texas 71000.0 dtype: float64 # 相同索引值的元素相加 In [62]: ser3 + ser4 Out[62]: California NaN Ohio 70000.0 Oregon 32000.0 Texas 142000.0 Utah NaN dtype: float64
1.7 命名
Series对象本身,以及索引都有一个 name 属性
In [64]: ser4.index.name = "state" In [65]: ser4.name = "population" In [66]: ser4 Out[66]: state California NaN Ohio 35000.0 Oregon 16000.0 Texas 71000.0 Name: population, dtype: float64
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】