一、多项式拟合

多项式拟合的话,用的的是numpy这个库的polyfit这个函数。那么多项式拟合,最简单的当然是,一次多项式拟合了,就是线性回归。直接看代码吧

import numpy as np
 
def linear_regression(x,y):
 #y=bx+a,线性回归
 num=len(x)
 b=(np.sum(x*y)-num*np.mean(x)*np.mean(y))/(np.sum(x*x)-num*np.mean(x)**2)
 a=np.mean(y)-b*np.mean(x)
 return np.array([b,a])
def f(x):
 return 2*x+1
x=np.linspace(-5,5)
y=f(x)+np.random.randn(len(x))#加入噪音
y_fit=np.polyfit(x,y,1)#一次多项式拟合,也就是线性回归
print(linear_regression(x,y))
print(y_fit)

手写线性回归我还是会的,然后我们来看下输出:

[1.9937839 1.24167225]
[1.9937839 1.24167225]

由于有random每次显示的结果都不一样,但很明显的是上下两个print是意料之中的一样,emmmmm,一次多项式拟合的源代码应该就是像我写的那样。好了,那么一次以上呢?咳咳,我数学不算太好,还是老老实实用库函数吧,顺便画下图,见识它的威力。

import numpy as np
from matplotlib import pyplot as plt
 
def f(x):
 return x**2+1
def f_fit(x,y_fit):
 a,b,c=y_fit.tolist()
 return a*x**2+b*x+c
x=np.linspace(-5,5)
y=f(x)+np.random.randn(len(x))#加入噪音
y_fit=np.polyfit(x,y,2)#二次多项式拟合
y_show=np.poly1d(y_fit)#函数优美的形式
print(y_show)#打印
y1=f_fit(x,y_fit)
plt.plot(x,f(x),'r',label='original')
plt.scatter(x,y,c='g',label='before_fitting')#散点图
plt.plot(x,y1,'b--',label='fitting')
plt.title('polyfitting')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()#显示标签
plt.show()

输出:

2
1.001 x - 0.04002 x + 0.8952

python之拟合的实现

拟合效果看起来还是不错的。

二、各种函数的拟合

一般来说,多项式的拟合就能拟合很多函数了,比如指数函数,取对数就能化为多项式函数,甚至是一次多项式函数。可是,那些三角函数之类的复杂函数不能化为多项式去拟合,怎么办呢?要用到scipy.optimize的curve_fit函数了。

直接贴代码:

import numpy as np
from matplotlib import pyplot as plt
from scipy.optimize import curve_fit
 
def f(x):
 return 2*np.sin(x)+3
def f_fit(x,a,b):
 return a*np.sin(x)+b
def f_show(x,p_fit):
 a,b=p_fit.tolist()
 return a*np.sin(x)+b
x=np.linspace(-2*np.pi,2*np.pi)
y=f(x)+0.5*np.random.randn(len(x))#加入了噪音
p_fit,pcov=curve_fit(f_fit,x,y)#曲线拟合
print(p_fit)#最优参数
print(pcov)#最优参数的协方差估计矩阵
y1=f_show(x,p_fit)
plt.plot(x,f(x),'r',label='original')
plt.scatter(x,y,c='g',label='before_fitting')#散点图
plt.plot(x,y1,'b--',label='fitting')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

输出:

[1.91267059 3.04489528]
[[ 9.06910892e-03 -1.83703696e-11]
[-1.83703696e-11 4.44386331e-03]]

python之拟合的实现

使用方法基础的就是这样了。然后更多详细的参数的使用就是要看官网了。

1、https://docs.scipy.org/doc/numpy/reference/generated/numpy.polyfit.html

2、https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.optimize.curve_fit.html

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?