问题:训练好的网络模型想知道中间某一层的权重或者看看中间某一层的特征,如何处理呢"htmlcode">

import torch
import pandas as pd
import numpy as np
import torchvision.models as models

resnet18 = models.resnet18(pretrained=True)

parm={}
for name,parameters in resnet18.named_parameters():
  print(name,':',parameters.size())
  parm[name]=parameters.detach().numpy()

上述代码将每个模块参数存入parm字典中,parameters.detach().numpy()将tensor类型变量转换成numpy array形式,方便后续存储到表格中.输出为:

conv1.weight : torch.Size([64, 3, 7, 7])
bn1.weight : torch.Size([64])
bn1.bias : torch.Size([64])
layer1.0.conv1.weight : torch.Size([64, 64, 3, 3])
layer1.0.bn1.weight : torch.Size([64])
layer1.0.bn1.bias : torch.Size([64])
layer1.0.conv2.weight : torch.Size([64, 64, 3, 3])
layer1.0.bn2.weight : torch.Size([64])
layer1.0.bn2.bias : torch.Size([64])
layer1.1.conv1.weight : torch.Size([64, 64, 3, 3])
layer1.1.bn1.weight : torch.Size([64])
layer1.1.bn1.bias : torch.Size([64])
layer1.1.conv2.weight : torch.Size([64, 64, 3, 3])
layer1.1.bn2.weight : torch.Size([64])
layer1.1.bn2.bias : torch.Size([64])
layer2.0.conv1.weight : torch.Size([128, 64, 3, 3])
layer2.0.bn1.weight : torch.Size([128])
layer2.0.bn1.bias : torch.Size([128])
layer2.0.conv2.weight : torch.Size([128, 128, 3, 3])
layer2.0.bn2.weight : torch.Size([128])
layer2.0.bn2.bias : torch.Size([128])
layer2.0.downsample.0.weight : torch.Size([128, 64, 1, 1])
layer2.0.downsample.1.weight : torch.Size([128])
layer2.0.downsample.1.bias : torch.Size([128])
layer2.1.conv1.weight : torch.Size([128, 128, 3, 3])
layer2.1.bn1.weight : torch.Size([128])
layer2.1.bn1.bias : torch.Size([128])
layer2.1.conv2.weight : torch.Size([128, 128, 3, 3])
layer2.1.bn2.weight : torch.Size([128])
layer2.1.bn2.bias : torch.Size([128])
layer3.0.conv1.weight : torch.Size([256, 128, 3, 3])
layer3.0.bn1.weight : torch.Size([256])
layer3.0.bn1.bias : torch.Size([256])
layer3.0.conv2.weight : torch.Size([256, 256, 3, 3])
layer3.0.bn2.weight : torch.Size([256])
layer3.0.bn2.bias : torch.Size([256])
layer3.0.downsample.0.weight : torch.Size([256, 128, 1, 1])
layer3.0.downsample.1.weight : torch.Size([256])
layer3.0.downsample.1.bias : torch.Size([256])
layer3.1.conv1.weight : torch.Size([256, 256, 3, 3])
layer3.1.bn1.weight : torch.Size([256])
layer3.1.bn1.bias : torch.Size([256])
layer3.1.conv2.weight : torch.Size([256, 256, 3, 3])
layer3.1.bn2.weight : torch.Size([256])
layer3.1.bn2.bias : torch.Size([256])
layer4.0.conv1.weight : torch.Size([512, 256, 3, 3])
layer4.0.bn1.weight : torch.Size([512])
layer4.0.bn1.bias : torch.Size([512])
layer4.0.conv2.weight : torch.Size([512, 512, 3, 3])
layer4.0.bn2.weight : torch.Size([512])
layer4.0.bn2.bias : torch.Size([512])
layer4.0.downsample.0.weight : torch.Size([512, 256, 1, 1])
layer4.0.downsample.1.weight : torch.Size([512])
layer4.0.downsample.1.bias : torch.Size([512])
layer4.1.conv1.weight : torch.Size([512, 512, 3, 3])
layer4.1.bn1.weight : torch.Size([512])
layer4.1.bn1.bias : torch.Size([512])
layer4.1.conv2.weight : torch.Size([512, 512, 3, 3])
layer4.1.bn2.weight : torch.Size([512])
layer4.1.bn2.bias : torch.Size([512])
fc.weight : torch.Size([1000, 512])
fc.bias : torch.Size([1000])
parm['layer1.0.conv1.weight'][0,0,:,:]

输出为:

array([[ 0.05759342, -0.09511436, -0.02027232],
[-0.07455588, -0.799308 , -0.21283598],
[ 0.06557069, -0.09653367, -0.01211061]], dtype=float32)

利用如下函数将某一层的所有参数保存到表格中,数据维持卷积核特征大小,如3*3的卷积保存后还是3x3的.

def parm_to_excel(excel_name,key_name,parm):
with pd.ExcelWriter(excel_name) as writer:
[output_num,input_num,filter_size,_]=parm[key_name].size()
for i in range(output_num):
for j in range(input_num):
data=pd.DataFrame(parm[key_name][i,j,:,:].detach().numpy())
#print(data)
data.to_excel(writer,index=False,header=True,startrow=i*(filter_size+1),startcol=j*filter_size)

由于权重矩阵中有很多的值非常小,取出固定大小的值,并将全部权重写入excel

counter=1
with pd.ExcelWriter('test1.xlsx') as writer:
  for key in parm_resnet50.keys():
    data=parm_resnet50[key].reshape(-1,1)
    data=data[data>0.001]
    
    data=pd.DataFrame(data,columns=[key])
    data.to_excel(writer,index=False,startcol=counter)
    counter+=1

2、获取中间某一层的特性

重写一个函数,将需要输出的层输出即可.

def resnet_cifar(net,input_data):
  x = net.conv1(input_data)
  x = net.bn1(x)
  x = F.relu(x)
  x = net.layer1(x)
  x = net.layer2(x)
  x = net.layer3(x)
  x = net.layer4[0].conv1(x) #这样就提取了layer4第一块的第一个卷积层的输出
  x=x.view(x.shape[0],-1)
  return x

model = models.resnet18()
x = resnet_cifar(model,input_data)

以上这篇获取Pytorch中间某一层权重或者特征的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com