pytorch 输出中间层特征:
tensorflow输出中间特征,2种方式:
1. 保存全部模型(包括结构)时,需要之前先add_to_collection 或者 用slim模块下的end_points
2. 只保存模型参数时,可以读取网络结构,然后按照对应的中间层输出即可。
but:Pytorch 论坛给出的答案并不好用,无论是hooks,还是重建网络并去掉某些层,这些方法都不好用(在我看来)。
我们可以在创建网络class时,在forward时加入一个dict 或者 list,dict是将中间层名字与中间层输出分别作为key:value,然后作为第二个值返回。前提是:运行创建自己的网络(无论fine-tune),只保存网络参数。
个人理解:虽然每次运行都返回2个值,但是运行效率基本没有变化。
附上代码例子:
import torch import torchvision import numpy as np from torch import nn from torch.nn import init from torch.autograd import Variable from torch.utils import data EPOCH=20 BATCH_SIZE=64 LR=1e-2 train_data=torchvision.datasets.MNIST(root='./mnist',train=True, transform=torchvision.transforms.ToTensor(),download=False) train_loader=data.DataLoader(train_data,batch_size=BATCH_SIZE,shuffle=True) test_data=torchvision.datasets.MNIST(root='./mnist',train=False) test_x=Variable(torch.unsqueeze(test_data.test_data,dim=1).type(torch.FloatTensor)).cuda()/255 test_y=test_data.test_labels.cuda() class CNN(nn.Module): def __init__(self): super().__init__() self.conv1=nn.Sequential( nn.Conv2d(in_channels=1,out_channels=16,kernel_size=4,stride=1,padding=2), nn.ReLU(), nn.MaxPool2d(kernel_size=2,stride=2)) self.conv2=nn.Sequential(nn.Conv2d(16,32,4,1,2),nn.ReLU(),nn.MaxPool2d(2,2)) self.out=nn.Linear(32*7*7,10) def forward(self,x): per_out=[] ############修改处############## x=self.conv1(x) per_out.append(x) # conv1 x=self.conv2(x) per_out.append(x) # conv2 x=x.view(x.size(0),-1) output=self.out(x) return output,per_out cnn=CNN().cuda() # or cnn.cuda() optimizer=torch.optim.Adam(cnn.parameters(),lr=LR) loss_func=nn.CrossEntropyLoss().cuda()############################ for epoch in range(EPOCH): for step,(x,y) in enumerate(train_loader): b_x=Variable(x).cuda()# if channel==1 auto add c=1 b_y=Variable(y).cuda() # print(b_x.data.shape) optimizer.zero_grad() output=cnn(b_x)[0] ##原先只需要cnn(b_x) 但是现在需要用到第一个返回值## loss=loss_func(output,b_y)# Variable need to get .data loss.backward() optimizer.step() if step%50==0: test_output=cnn(test_x)[0] pred_y=torch.max(test_output,1)[1].cuda().data.squeeze() ''' why data ,because Variable .data to Tensor;and cuda() not to numpy() ,must to cpu and to numpy and .float compute decimal ''' accuracy=torch.sum(pred_y==test_y).data.float()/test_y.size(0) print('EPOCH: ',epoch,'| train_loss:%.4f'%loss.data[0],'| test accuracy:%.2f'%accuracy) # loss.data.cpu().numpy().item() get one value torch.save(cnn.state_dict(),'./model/model.pth') ##输出中间层特征,根据索引调用## conv1: conv1=cnn(b_x)[1][0] conv2: conv2=cnn(b_x)[1][1]
##########################
hook使用:
res=torchvision.models.resnet18() def get_features_hook(self, input, output):# self 代表类模块本身 print(output.data.cpu().numpy().shape) handle=res.layer2.register_forward_hook(get_features_hook) a=torch.ones([1,3,224,224])
b=res(a) 直接打印出 layer2的输出形状,但是不好用。因为,实际中,我们需要return,而hook明确指出 不可以return 只能print。
所以,不建议使用hook。
以上这篇pytorch 输出中间层特征的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]
- 林子祥《单手拍掌》华纳香港版[WAV+CUE][1G]
- 郑秀文.1997-我们的主题曲【华纳】【WAV+CUE】
- 群星.2001-生命因爱动听电影原创音乐AVCD【MEDIA】【WAV+CUE】