Python list内置sort()方法用来排序,也可以用python内置的全局sorted()方法来对可迭代的序列排序生成新的序列。

1)排序基础

简单的升序排序是非常容易的。只需要调用sorted()方法。它返回一个新的list,新的list的元素基于小于运算符(__lt__)来排序。

> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]

你也可以使用list.sort()方法来排序,此时list本身将被修改。通常此方法不如sorted()方便,但是如果你不需要保留原来的list,此方法将更有效。

> a = [5, 2, 3, 1, 4]
> a.sort()
> a
[1, 2, 3, 4, 5]

另一个不同就是list.sort()方法仅被定义在list中,相反地sorted()方法对所有的可迭代序列都有效。

> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]

2)key参数/函数

从python2.4开始,list.sort()和sorted()函数增加了key参数来指定一个函数,此函数将在每个元素比较前被调用。 例如通过key指定的函数来忽略字符串的大小写:

> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']

key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较。这个技术是快速的因为key指定的函数将准确地对每个元素调用。

更广泛的使用情况是用复杂对象的某些值来对复杂对象的序列排序,例如:

> student_tuples = [
    ('john', 'A', 15),
    ('jane', 'B', 12),
    ('dave', 'B', 10),
]
> sorted(student_tuples, key=lambda student: student[2])  # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

同样的技术对拥有命名属性的复杂对象也适用,例如:

> class Student:
    def __init__(self, name, grade, age):
        self.name = name
        self.grade = grade
        self.age = age
    def __repr__(self):
        return repr((self.name, self.grade, self.age))
> student_objects = [
    Student('john', 'A', 15),
    Student('jane', 'B', 12),
    Student('dave', 'B', 10),
]
> sorted(student_objects, key=lambda student: student.age)  # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

3)Operator 模块函数

上面的key参数的使用非常广泛,因此python提供了一些方便的函数来使得访问方法更加容易和快速。operator模块有itemgetter,attrgetter,从2.6开始还增加了methodcaller方法。使用这些方法,上面的操作将变得更加简洁和快速:

> from operator import itemgetter, attrgetter
> sorted(student_tuples, key=itemgetter(2))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
> sorted(student_objects, key=attrgetter('age'))
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

operator模块还允许多级的排序,例如,先以grade,然后再以age来排序:

> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
> sorted(student_objects, key=attrgetter('grade', 'age'))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]

4)升序和降序

list.sort()和sorted()都接受一个参数reverse(True or False)来表示升序或降序排序。例如对上面的student降序排序如下:

> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
> sorted(student_objects, key=attrgetter('age'), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]

5)排序的稳定性和复杂排序

从python2.2开始,排序被保证为稳定的。意思是说多个元素如果有相同的key,则排序前后他们的先后顺序不变。

> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]

注意在排序后'blue'的顺序被保持了,即'blue', 1在'blue', 2的前面。

更复杂地你可以构建多个步骤来进行更复杂的排序,例如对student数据先以grade降序排列,然后再以age升序排列。

> s = sorted(student_objects, key=attrgetter('age'))   # sort on secondary key
> sorted(s, key=attrgetter('grade'), reverse=True)    # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

以上就是本次介绍的全部实例知识点内容,感谢大家对的支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com