本文实例讲述了python连接、操作mongodb数据库的方法。分享给大家供大家参考,具体如下:
数据库连接
from pymongo import MongoClient import pandas as pd #建立MongoDB数据库连接 client = MongoClient('162.23.167.36',27101)#或MongoClient("mongodb://162.23.167.36:27101/") #连接所需数据库,testDatabase为数据库名: db=client.testDatabase #连接所用集合,也就是我们通常所说的表,testTable为表名 collection=db.testTable
查询前几条
dataSet=collection.find().limit(3) for item in dataSet: print(item)
无条件查询全部
dataSet=collection.find() for item in dataSet: print(item)
按AND条件查询全部
#查询cpu使用率大于等于10且内存使用率大于等于10的所有字段数据 dataSet=collection.find({"cpu":{"$gte":10},"mem":{"$gte":10}}) for item in dataSet: print(item)
按AND条件查询指定字段数据
#查询cpu使用率大于等于10且内存使用率大于等于10的数据,字段只显示did、ts、cpu、mem dataSet=collection.find({"cpu":{"$gte":10},"mem":{"$gte":10}}, {"did":1,"ts":1,"cpu":1,"mem":1}) for item in dataSet: print(item) #查询cpu使用率等于0且内存使用率等于0的数据,字段只显示did、ts、cpu、mem dataSet=collection.find({"cpu":0,"mem":0}, {"did":1,"ts":1,"cpu":1,"mem":1}) for item in dataSet: print(item)
按OR条件查询指定字段数据
#查询cpu使用率大于等于10或者内存使用率大于等于10的数据,字段只显示did、ts、cpu、mem dataSet=collection.find({"$or":[{"cpu":{"$gte":10}},{"mem":{"$gte":10}}]}, {"did":1,"ts":1,"cpu":1,"mem":1}) for item in dataSet: print(item) #查询cpu使用率等于10或者内存使用率等于10的数据,字段只显示did、ts、cpu、mem dataSet=collection.find({"$or":[{"cpu":10},{"mem":10}]}, {"did":1,"ts":1,"cpu":1,"mem":1}) for item in dataSet: print(item)
mongodb的条件操作符
# > - $gt # < - $lt # >= - $gte # <= - $lte
排序
#单列升序排序查询,,1 为升序,-1为降序 dataSet=collection.find().sort([("cpu",1)]) for item in dataSet: print(item) #多列排序查询 dataSet=collection.find().sort([('did',pymongo.ASCENDING),('cpu',pymongo.DESCENDING)]) for item in dataSet: print(item)
查询结果写入excel
#查询cpu使用率大于等于10且内存使用率大于等于10的数据,字段只显示did、ts、cpu、mem,查询结果写入excel import pandas as pd dataSet=collection.find({"cpu":{"$gte":10},"mem":{"$gte":10}}, {"did":1,"ts":1,"cpu":1,"mem":1}) did,ts,cpu,mem=[],[],[],[] for item in dataSet: did.append(item["did"]) ts.append(item["ts"]) cpu.append(item["cpu"]) mem.append(item["mem"]) df=pd.DataFrame({"did":did,"ts":ts,"cpu":cpu,"mem":mem}) df.to_excel("C:/Users/Desktop/设备cpu内存数据.xlsx")
跳行查询
#下面表示跳过两条数据后读取数据 dataSet=collection.find().skip(2) for item in dataSet: print(item)
去重
#查询cpu使用率大于20、did不重复的数据 dataSet=collection.distinct("did",{"cpu":{$gt:20}}) for item in dataSet: print(item) #等同mysql的select distinct(did) from user where cpu>20
参考:
操作mongodb更详细说明https://www.jb51.net/article/169726.htm
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python常见数据库操作技巧汇总》、《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】
- 谭咏麟.2022-倾·听【环球】【WAV+CUE】