最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。

数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。

这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。大家可以把这篇文章收藏起来,当做工具箱使用。

涵盖8大场景的数据清洗代码

这些数据清洗代码,一共涵盖8个场景,分别是:

删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳(从字符串到日期时间格式)

删除多列

在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。

def drop_multiple_col(col_names_list, df): 

  AIM  -> Drop multiple columns based on their column names 

  INPUT -> List of column names, df

  OUTPUT -> updated df with dropped columns 
  ------

  df.drop(col_names_list, axis=1, inplace=True)
  return df

转换数据类型

当数据集变大时,需要转换数据类型来节省内存。

def change_dtypes(col_int, col_float, df): 

  AIM  -> Changing dtypes to save memory

  INPUT -> List of column names (int, float), df

  OUTPUT -> updated df with smaller memory 
  ------

  df[col_int] = df[col_int].astype( int32 )
  df[col_float] = df[col_float].astype( float32 )

将分类变量转换为数值变量

一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化。

def convert_cat2num(df):
  # Convert categorical variable to numerical variable
  num_encode = { col_1 : { YES :1, NO :0},
          col_2  : { WON :1, LOSE :0, DRAW :0}} 
  df.replace(num_encode, inplace=True) 

检查缺失数据

如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。

def check_missing_data(df):
  # check for any missing data in the df (display in descending order)
  return df.isnull().sum().sort_values(ascending=False)

删除列中的字符串

有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1'].replace很简单地把它们处理掉。

def remove_col_str(df):
  # remove a portion of string in a dataframe column - col_1
  df[ col_1 ].replace(, , regex=True, inplace=True)

  # remove all the characters after &# (including &#) for column - col_1
  df[ col_1 ].replace( &#.* , , regex=True, inplace=True)

删除列中的空格

数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用。

def remove_col_white_space(df):
  # remove white space at the beginning of string 
  df[col] = df[col].str.lstrip()

用字符串连接两列(带条件)

当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。根据需要,结尾处的字母也可以在连接完成后删除。

def concat_col_str_condition(df):
  # concat 2 columns with strings if the last 3 letters of the first column are pil
  mask = df[ col_1 ].str.endswith( pil , na=False)
  col_new = df[mask][ col_1 ] + df[mask][ col_2 ]
  col_new.replace( pil ,  , regex=True, inplace=True) # replace the pil with emtpy space

转换时间戳(从字符串到日期时间格式)

在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。

def convert_str_datetime(df): 

  AIM  -> Convert datetime(String) to datetime(format we want)

  INPUT -> df

  OUTPUT -> updated df with new datetime format 
  ------

  df.insert(loc=2, column= timestamp , value=pd.to_datetime(df.transdate, format= %Y-%m-%d

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?