首先载入各种包:
import pandas as pd import numpy as np from collections import Counter from sklearn import preprocessing from matplotlib import pyplot as plt %matplotlib inline import seaborn as sns plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体设置-黑体 plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 sns.set(font='SimHei') # 解决Seaborn中文显示问题
读入数据:这里数据是编造的
data=pd.read_excel('dummy.xlsx')
本案例的真实数据是这样的:
对数据进行多方位的查看:
实际情况中可能会有很多行,一般用head()看数据基本情况
data.head() #查看长啥样 data.shape #查看数据的行列大小 data.describe()
#列级别的判断,但凡某一列有null值或空的,则为真 data.isnull().any() #将列中为空或者null的个数统计出来,并将缺失值最多的排前 total = data.isnull().sum().sort_values(ascending=False) print(total) #输出百分比: percent =(data.isnull().sum()/data.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) missing_data.head(20)
也可以从视觉上直观查看缺失值:
import missingno missingno.matrix(data) data=data.dropna(thresh=data.shape[0]*0.5,axis=1) #至少有一半以上是非空的列筛选出来
#如果某一行全部都是na才删除: data.dropna(axis=0,how='all')
#默认情况下是只保留没有空值的行 data=data.dropna(axis=0)
#统计重复记录数 data.duplicated().sum() data.drop_duplicates()
对连续型数据和离散型数据分开处理:
data.columns #第一步,将整个data的连续型字段和离散型字段进行归类 id_col=['姓名'] cat_col=['学历','学校'] #这里是离散型无序,如果有序,请参考map用法,一些博客上有写 cont_col=['成绩','能力'] #这里是数值型 print (data[cat_col]) #这里是离散型的数据部分 print (data[cont_col])#这里是连续性数据部分
对于离散型部分:
#计算出现的频次 for i in cat_col: print (pd.Series(data[i]).value_counts()) plt.plot(data[i])
#对于离散型数据,对其获取哑变量 dummies=pd.get_dummies(data[cat_col]) dummies
对于连续型部分:
#对于连续型数据的大概统计: data[cont_col].describe() #对于连续型数据,看偏度,一般大于0.75的数值做一个log转化,使之尽量符合正态分布,因为很多模型的假设数据是服从正态分布的 skewed_feats = data[cont_col].apply(lambda x: (x.dropna()).skew() )#compute skewness skewed_feats = skewed_feats[skewed_feats > 0.75] skewed_feats = skewed_feats.index data[skewed_feats] = np.log1p(data[skewed_feats]) skewed_feats
#对于连续型数据,对其进行标准化 scaled=preprocessing.scale(data[cont_col]) scaled=pd.DataFrame(scaled,columns=cont_col) scaled
m=dummies.join(scaled) data_cleaned=data[id_col].join(m) data_cleaned
看变量之间的相关性:
data_cleaned.corr()
#以下是相关性的热力图,方便肉眼看 def corr_heat(df): dfData = abs(df.corr()) plt.subplots(figsize=(9, 9)) # 设置画面大小 sns.heatmap(dfData, annot=True, vmax=1, square=True, cmap="Blues") # plt.savefig('./BluesStateRelation.png') plt.show() corr_heat(data_cleaned)
如果有觉得相关性偏高的视情况删减某些变量。
#取出与某个变量(这里指能力)相关性最大的前四个,做出热点图表示 k = 4 #number of variables for heatmap cols = corrmat.nlargest(k, '能力')['能力'].index cm = np.corrcoef(data_cleaned[cols].values.T) sns.set(font_scale=1.25) hm = sns.heatmap(cm, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 10}, yticklabels=cols.values, xticklabels=cols.values) plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月19日
2024年11月19日
- 群星《2022年度抖音新歌》黑胶碟2CD[WAV+CUE][1.6G]
- 方伊琪.2008-不一样的方伊琪【风行】【WAV+CUE】
- 谭咏麟.2023-爱情陷阱(MQA-UHQCD限量版)【环球】【WAV+CUE】
- 群星.2012-尝味·人生-百味华语作品集2CD【环球】【WAV+CUE】
- 童丽《绝对收藏·贰》头版限量编号24K金碟[低速原抓WAV+CUE][1.1G]
- 阿梨粤《难得有情人》头版限量编号HQⅡ [WAV+CUE][1.1G]
- 王闻&曼丽《一起走过的日子》头版限量编号24K金碟[低速原抓WAV+CUE][1.2G]
- 群星《天苍·野茫》绝对的穿透力[DTS-WAV]
- 群星1977-佳艺电视节目主题曲精选(2001复刻版)[文志][WAV+CUE]
- 黄乙玲1999-无字的情批[台湾首版][WAV+CUE]
- 何超仪.1996-何家淑女(EP)【华星】【WAV+CUE】
- 娃娃.1995-随风【滚石】【WAV+CUE】
- 林俊吉.2007-林俊吉【美华影音】【WAV+CUE】
- 梁静茹《勇气》滚石首版[WAV+CUE][1.1G]
- 刘若英《听说》[WAV+CUE][1.1G]