函数形式:
index_select( dim, index )
参数:
- dim:表示从第几维挑选数据,类型为int值;
- index:表示从第一个参数维度中的哪个位置挑选数据,类型为torch.Tensor类的实例;
刚开始学习pytorch,遇到了index_select(),一开始不太明白几个参数的意思,后来查了一下资料,算是明白了一点。
a = torch.linspace(1, 12, steps=12).view(3, 4) print(a) b = torch.index_select(a, 0, torch.tensor([0, 2])) print(b) print(a.index_select(0, torch.tensor([0, 2]))) c = torch.index_select(a, 1, torch.tensor([1, 3])) print(c)
先定义了一个tensor,这里用到了linspace和view方法。
第一个参数是索引的对象,第二个参数0表示按行索引,1表示按列进行索引,第三个参数是一个tensor,就是索引的序号,比如b里面tensor[0, 2]表示第0行和第2行,c里面tensor[1, 3]表示第1列和第3列。
输出结果如下:
tensor([[ 1., 2., 3., 4.],
[ 5., 6., 7., 8.],
[ 9., 10., 11., 12.]])
tensor([[ 1., 2., 3., 4.],
[ 9., 10., 11., 12.]])
tensor([[ 1., 2., 3., 4.],
[ 9., 10., 11., 12.]])
tensor([[ 2., 4.],
[ 6., 8.],
[10., 12.]])
功能:从张量的某个维度的指定位置选取数据。
代码实例:
t = torch.arange(24).reshape(2, 3, 4) # 初始化一个tensor,从0到23,形状为(2,3,4) print("t--->", t) index = torch.tensor([1, 2]) # 要选取数据的位置 print("index--->", index) data1 = t.index_select(1, index) # 第一个参数:从第1维挑选, 第二个参数:从该维中挑选的位置 print("data1--->", data1) data2 = t.index_select(2, index) # 第一个参数:从第2维挑选, 第二个参数:从该维中挑选的位置 print("data2--->", data2)
运行结果:
t---> tensor([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
index---> tensor([1, 2])
data1---> tensor([[[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[16, 17, 18, 19],
[20, 21, 22, 23]]])
data2---> tensor([[[ 1, 2],
[ 5, 6],
[ 9, 10]],
[[13, 14],
[17, 18],
[21, 22]]])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]
- 林子祥《单手拍掌》华纳香港版[WAV+CUE][1G]
- 郑秀文.1997-我们的主题曲【华纳】【WAV+CUE】
- 群星.2001-生命因爱动听电影原创音乐AVCD【MEDIA】【WAV+CUE】
- 林志颖.1994-别了晴雨的回忆【飞碟】【WAV+CUE】
- 群星《经典咏流传2》限量1:1母盘直刻[低速原抓WAV+CUE]
- 【蓝卡唱片】卫海霞《乐海霞音珍藏版》WAV分轨
- 杨小琳《金装杨小琳》24K金碟特别版[低速原抓WAV+CUE]
- 群星《国风超有戏 第8期》[320K/MP3][30.32MB]
- 群星《国风超有戏 第8期》[FLAC/分轨][157.37MB]
- 群星《说唱梦工厂 第10期》[320K/MP3][99.5MB]
- 李嘉.1996-思念过秋冬【点将】【WAV+CUE】
- 汪峰.2009-信仰在空中飘扬【星文】【WAV+CUE】