这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存。以这种方式,可以得到一个能反映流形的几何结构的解。
步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3…n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关。如果xi,xj相距较近,我们就连接vi,vj。也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数。
步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为0,连接点之间的权值:
使 是最小的m+1个本征值。忽略与 =0相关的本征向量,选取另外m个本征向量即为降维后的向量。
1、python实现拉普拉斯降维
def laplaEigen(dataMat,k,t): m,n=shape(dataMat) W=mat(zeros([m,m])) D=mat(zeros([m,m])) for i in range(m): k_index=knn(dataMat[i,:],dataMat,k) for j in range(k): sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] sqDiffVector=array(sqDiffVector)**2 sqDistances = sqDiffVector.sum() W[i,k_index[j]]=math.exp(-sqDistances/t) D[i,i]+=W[i,k_index[j]] L=D-W Dinv=np.linalg.inv(D) X=np.dot(D.I,L) lamda,f=np.linalg.eig(X) return lamda,f def knn(inX, dataSet, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = array(diffMat)**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() return sortedDistIndicies[0:k] dataMat, color = make_swiss_roll(n_samples=2000) lamda,f=laplaEigen(dataMat,11,5.0) fm,fn =shape(f) print 'fm,fn:',fm,fn lamdaIndicies = argsort(lamda) first=0 second=0 print lamdaIndicies[0], lamdaIndicies[1] for i in range(fm): if lamda[lamdaIndicies[i]].real>1e-5: print lamda[lamdaIndicies[i]] first=lamdaIndicies[i] second=lamdaIndicies[i+1] break print first, second redEigVects = f[:,lamdaIndicies] fig=plt.figure('origin') ax1 = fig.add_subplot(111, projection='3d') ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) fig=plt.figure('lowdata') ax2 = fig.add_subplot(111) ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) plt.show()
2、拉普拉斯降维实验
用如下参数生成实验数据存在swissdata.dat里面:
def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): #Generate a swiss roll dataset. t = 1.5 * np.pi * (1 + 2 * random.rand(1, n_samples)) x = t * np.cos(t) y = 83 * random.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * random.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t
实验结果如下:
以上这篇python实现拉普拉斯特征图降维示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
更新日志
2024年11月20日
2024年11月20日
- 汪峰 白金超精选《生来彷徨2CD》[WAV+CUE][1.5G]
- 孙露《寂寞撩人》限量1:1母盘直刻低速原抓[WAV+CUE]
- 20世纪伟大的钢琴家《盖扎·安达》2CD[WAV分轨]
- 龚玥《微风拂面HQCD》[低速原抓WAV+CUE]
- 群星《新说唱2024 第12期 (上)》[320K/MP3][117.13MB]
- 群星《新说唱2024 第12期 (上)》[FLAC/分轨][626.34MB]
- 彦希《Golden Blue》[320K/MP3][111.78MB]
- 中岛美雪《美雪集原曲流行极品》[正版原抓WAV+CUE]
- 【古典音乐】《最优美的格里格音乐作品》2CD[FLAC+CUE/整轨]
- 中央乐团《春芽(63首世界名曲联奏)》APE
- 彦希《Golden Blue》[FLAC/分轨][587.25MB]
- 群星《我们的歌第六季 第1期》[320K/MP3][90.72MB]
- 群星《我们的歌第六季 第1期》[FLAC/分轨][456.01MB]
- 齐秦 《辉煌30年DSD》24K珍藏版2CD[WAV+CUE][1.9G]
- 张玮伽《聆听伽音 HQCDII 》[正版原抓WAV+CUE][1.1G]