哈希表
哈希表(Hash Table, 又称为散列表),是一种线性表的存储结构。哈希表由一个直接寻址表和一个哈希函数组成。哈希函数h(k)将元素关键字k作为自变量,返回元素的存储下标。
简单哈希函数:
除法哈希:h(k) = k mod m乘法哈希:h(k) = floor(m(kA mod 1)) 0<A<1
假设有一个长度为7的数组,哈希函数h(k) = k mod 7,元素集合{14, 22, 3, 5}的存储方式如下图:
哈希冲突
由于哈希表的大小是有限的,而要存储的值的总数量是无限的,因此对于任何哈希函数,都会出现两个不同的元素映射到同一个位置上的情况,这种情况叫做哈希冲突。
比如:h(k) = k mod 7, h(0) = h(7) = h(14) = ...
解决哈希冲突--开放寻址法
开放寻址法:如果哈希函数返回的位置已经有值,则可以向后探查新的位置来存储这个值
线性探查:如果位置i被占用,则探查i+1, i+2,...二次探查:如果位置i被占用,则探查i+12, i-12, i+22, i-22,...二度哈希:有n个哈希函数,当使用第一个哈希函数h1发生冲突时,则尝试使用h2, h3,...
解决哈希冲突--拉链法
拉链法:哈希表每一个位置都连接一个链表,当冲突发生时,冲突的元素将被加到该位置链表的最后。
哈希表的实现
class Array(object): def __init__(self, size=32, init=None): self._size = size self._items = [init] * size def __getitem__(self, index): return self._items[index] def __setitem__(self, index, value): self._items[index] = value def __len__(self): return self._size def clear(self, value=None): for i in range(len(self._items)): self._items[i] = value def __iter__(self): for item in self._items: yield item class Slot(object): """ 定义一个 hash 表数组的槽(slot 这里指的就是数组的一个位置) hash table 就是一个数组,每个数组的元素(也叫slot槽)是一个对象,对象包含两个属性 key 和 value。 注意,一个槽有三种状态,看你能否想明白。相比链接法解决冲突,探查法删除一个 key 的操作稍微复杂。 1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到 UNUSED 就不用再继续探查了 2.使用过但是 remove 了,此时是 HashMap.EMPTY,该探查点后边的元素仍然可能是有key的,需要继续查找 3.槽正在使用 Slot 节点 """ def __init__(self, key, value): self.key, self.value = key, value class HashTable(object): UNUSED = None # 没被使用过 EMPTY = Slot(None, None) # 使用却被删除过 def __init__(self): self._table = Array(8, init=HashTable.UNUSED) # 保持 2*i 次方 self.length = 0 @property def _load_factor(self): # load_factor 超过 0.8 重新分配 return self.length / float(len(self._table)) def __len__(self): return self.length # 进行哈希 def _hash(self, key): return abs(hash(key)) % len(self._table) # 查找key def _find_key(self, key): """ 解释一个 slot 为 UNUSED 和 EMPTY 的区别 因为使用的是二次探查的方式,假如有两个元素 A,B 冲突了, 首先A hash 得到是 slot 下标5,A 放到了第5个槽,之后插入 B 因为冲突了,所以继续根据二次探查方式放到了 slot下标8。 然后删除 A,槽 5 被置为 EMPTY。然后我去查找 B, 第一次 hash 得到的是 槽5,但是这个时候我还是需要第二次计算 hash 才能找到 B。 但是如果槽是 UNUSED 我就不用继续找了,我认为 B 就是不存在的元素。这个就是 UNUSED 和 EMPTY 的区别。 """ origin_index = index = self._hash(key) # origin_index 判断是否又走到了起点,如果查找一圈了都找不到则无此元素 _len = len(self._table) while self._table[index] is not HashTable.UNUSED: if self._table[index] is HashTable.EMPTY: # 注意如果是 EMPTY,继续寻找下一个槽 index = (index * 5 + 1) % _len if index == origin_index: break continue if self._table[index].key == key: # 找到了key return index else: index = (index * 5 + 1) % _len # 没有找到继续找下一个位置 if index == origin_index: break return None # 找能插入的槽 def _find_slot_for_insert(self, key): index = self._hash(key) _len = len(self._table) while not self._slot_can_insert(index): # 直到找到一个可以用的槽 index = (index * 5 + 1) % _len return index # 槽是否能插入 def _slot_can_insert(self, index): return self._table[index] is HashTable.EMPTY or self._table[index] is HashTable.UNUSED # in operator,实现之后可以使用 in 操作符判断 def __contains__(self, key): index = self._find_key(key) return index is not None # 添加元素 def add(self, key, value): if key in self: # update index = self._find_key(key) self._table[index].value = value return False else: index = self._find_slot_for_insert(key) self._table[index] = Slot(key, value) self.length += 1 if self._load_factor >= 0.8: self._rehash() return True # 槽不够时,重哈希 def _rehash(self): old_table = self._table newsize = len(self._table) * 2 self._table = Array(newsize, HashTable.UNUSED) self.length = 0 for slot in old_table: if slot is not HashTable.UNUSED and slot is not HashTable.EMPTY: index = self._find_slot_for_insert(slot.key) self._table[index] = slot self.length += 1 # 获取值 def get(self, key, default=None): index = self._find_key(key) if index is None: return default else: return self._table[index].value # 移除 def remove(self, key): index = self._find_key(key) if index is None: raise KeyError() value = self._table[index].value self.length -= 1 self._table[index] = HashTable.EMPTY return value # 遍历 def __iter__(self): for slot in self._table: if slot not in (HashTable.EMPTY, HashTable.UNUSED): yield slot.key
哈希表的使用
h = HashTable() h.add('a', 0) h.add('b', 1) h.add('c', 2) print(len(h)) # 3 print(h.get('a')) # 0 print(h.get('b')) # 1 print(h.get('hehe')) # None h.remove('a') print(h.get('a')) # None print(sorted(list(h))) # ['b', 'c']
字典
字典是另一种可变容器模型,且可存储任意类型对象。
字典的每个键值key=>value对用冒号:分割,每个键值对之间用逗号,分割,整个字典包括在花括号{}中 ,格式如下所示:
d = {key1 : value1, key2 : value2 }
基于哈希表实现字典
class Array(object): def __init__(self, size=32, init=None): self._size = size self._items = [init] * size def __getitem__(self, index): return self._items[index] def __setitem__(self, index, value): self._items[index] = value def __len__(self): return self._size def clear(self, value=None): for i in range(len(self._items)): self._items[i] = value def __iter__(self): for item in self._items: yield item class Slot(object): """ 定义一个 hash 表数组的槽(slot 这里指的就是数组的一个位置) hash table 就是一个数组,每个数组的元素(也叫slot槽)是一个对象,对象包含两个属性 key 和 value。 注意,一个槽有三种状态,看你能否想明白。相比链接法解决冲突,探查法删除一个 key 的操作稍微复杂。 1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到 UNUSED 就不用再继续探查了 2.使用过但是 remove 了,此时是 HashMap.EMPTY,该探查点后边的元素仍然可能是有key的,需要继续查找 3.槽正在使用 Slot 节点 """ def __init__(self, key, value): self.key, self.value = key, value class HashTable(object): UNUSED = None # 没被使用过 EMPTY = Slot(None, None) # 使用却被删除过 def __init__(self): self._table = Array(8, init=HashTable.UNUSED) # 保持 2*i 次方 self.length = 0 @property def _load_factor(self): # load_factor 超过 0.8 重新分配 return self.length / float(len(self._table)) def __len__(self): return self.length # 进行哈希 def _hash(self, key): return abs(hash(key)) % len(self._table) # 查找key def _find_key(self, key): """ 解释一个 slot 为 UNUSED 和 EMPTY 的区别 因为使用的是二次探查的方式,假如有两个元素 A,B 冲突了, 首先A hash 得到是 slot 下标5,A 放到了第5个槽,之后插入 B 因为冲突了,所以继续根据二次探查方式放到了 slot下标8。 然后删除 A,槽 5 被置为 EMPTY。然后我去查找 B, 第一次 hash 得到的是 槽5,但是这个时候我还是需要第二次计算 hash 才能找到 B。 但是如果槽是 UNUSED 我就不用继续找了,我认为 B 就是不存在的元素。这个就是 UNUSED 和 EMPTY 的区别。 """ origin_index = index = self._hash(key) # origin_index 判断是否又走到了起点,如果查找一圈了都找不到则无此元素 _len = len(self._table) while self._table[index] is not HashTable.UNUSED: if self._table[index] is HashTable.EMPTY: # 注意如果是 EMPTY,继续寻找下一个槽 index = (index * 5 + 1) % _len if index == origin_index: break continue if self._table[index].key == key: # 找到了key return index else: index = (index * 5 + 1) % _len # 没有找到继续找下一个位置 if index == origin_index: break return None # 找能插入的槽 def _find_slot_for_insert(self, key): index = self._hash(key) _len = len(self._table) while not self._slot_can_insert(index): # 直到找到一个可以用的槽 index = (index * 5 + 1) % _len return index # 槽是否能插入 def _slot_can_insert(self, index): return self._table[index] is HashTable.EMPTY or self._table[index] is HashTable.UNUSED # in operator,实现之后可以使用 in 操作符判断 def __contains__(self, key): index = self._find_key(key) return index is not None # 添加元素 def add(self, key, value): if key in self: # update index = self._find_key(key) self._table[index].value = value return False else: index = self._find_slot_for_insert(key) self._table[index] = Slot(key, value) self.length += 1 if self._load_factor >= 0.8: self._rehash() return True # 槽不够时,重哈希 def _rehash(self): old_table = self._table newsize = len(self._table) * 2 self._table = Array(newsize, HashTable.UNUSED) self.length = 0 for slot in old_table: if slot is not HashTable.UNUSED and slot is not HashTable.EMPTY: index = self._find_slot_for_insert(slot.key) self._table[index] = slot self.length += 1 # 获取值 def get(self, key, default=None): index = self._find_key(key) if index is None: return default else: return self._table[index].value # 移除 def remove(self, key): index = self._find_key(key) if index is None: raise KeyError() value = self._table[index].value self.length -= 1 self._table[index] = HashTable.EMPTY return value # 遍历 def __iter__(self): for slot in self._table: if slot not in (HashTable.EMPTY, HashTable.UNUSED): yield slot.key class DictADT(HashTable): # 执行dict[key]=value时执行 def __setitem__(self, key, value): self.add(key, value) # 执行dict[key]时执行 def __getitem__(self, key, default=None): if key not in self: raise KeyError() return self.get(key, default) # 遍历时执行 def _iter_slot(self): for slot in self._table: if slot not in (self.UNUSED, self.EMPTY): yield slot # 实现items方法 def items(self): for slot in self._iter_slot(): yield (slot.key, slot.value) # 实现keys方法 def keys(self): for slot in self._iter_slot(): yield slot.key # 实现values方法 def values(self): for slot in self._iter_slot(): yield slot.value
字典的使用
d = DictADT() d['a'] = 1 print(d['a']) # 1
集合
集合是一种不包含重复元素的数据结构,经常用来判断是否重复这种操作,或者集合中是否存在一个元素。
集合可能最常用的就是去重,判断是否存在一个元素等,但是 set 相比 dict 有更丰富的操作,主要是数学概念上的。
如果你学过《离散数学》中集合相关的概念,基本上是一致的。 python 的 set 提供了如下基本的集合操作, 假设有两个集合 A,B,有以下操作
- 交集: A & B,表示同时在 A 和 B 中的元素。 python 中重载 __and__ 实现
- 并集: A | B,表示在 A 或者 B 中的元素,两个集合相加。python 中重载 __or__ 实现
- 差集: A - B,表示在 A 中但是不在 B 中的元素。 python 中重载 __sub__ 实现
基于哈希表实现集合
class Array(object): def __init__(self, size=32, init=None): self._size = size self._items = [init] * size def __getitem__(self, index): return self._items[index] def __setitem__(self, index, value): self._items[index] = value def __len__(self): return self._size def clear(self, value=None): for i in range(len(self._items)): self._items[i] = value def __iter__(self): for item in self._items: yield item class Slot(object): """ 定义一个 hash 表数组的槽(slot 这里指的就是数组的一个位置) hash table 就是一个数组,每个数组的元素(也叫slot槽)是一个对象,对象包含两个属性 key 和 value。 注意,一个槽有三种状态,看你能否想明白。相比链接法解决冲突,探查法删除一个 key 的操作稍微复杂。 1.从未使用 HashMap.UNUSED。此槽没有被使用和冲突过,查找时只要找到 UNUSED 就不用再继续探查了 2.使用过但是 remove 了,此时是 HashMap.EMPTY,该探查点后边的元素仍然可能是有key的,需要继续查找 3.槽正在使用 Slot 节点 """ def __init__(self, key, value): self.key, self.value = key, value class HashTable(object): UNUSED = None # 没被使用过 EMPTY = Slot(None, None) # 使用却被删除过 def __init__(self): self._table = Array(8, init=HashTable.UNUSED) # 保持 2*i 次方 self.length = 0 @property def _load_factor(self): # load_factor 超过 0.8 重新分配 return self.length / float(len(self._table)) def __len__(self): return self.length # 进行哈希 def _hash(self, key): return abs(hash(key)) % len(self._table) # 查找key def _find_key(self, key): """ 解释一个 slot 为 UNUSED 和 EMPTY 的区别 因为使用的是二次探查的方式,假如有两个元素 A,B 冲突了, 首先A hash 得到是 slot 下标5,A 放到了第5个槽,之后插入 B 因为冲突了,所以继续根据二次探查方式放到了 slot下标8。 然后删除 A,槽 5 被置为 EMPTY。然后我去查找 B, 第一次 hash 得到的是 槽5,但是这个时候我还是需要第二次计算 hash 才能找到 B。 但是如果槽是 UNUSED 我就不用继续找了,我认为 B 就是不存在的元素。这个就是 UNUSED 和 EMPTY 的区别。 """ origin_index = index = self._hash(key) # origin_index 判断是否又走到了起点,如果查找一圈了都找不到则无此元素 _len = len(self._table) while self._table[index] is not HashTable.UNUSED: if self._table[index] is HashTable.EMPTY: # 注意如果是 EMPTY,继续寻找下一个槽 index = (index * 5 + 1) % _len if index == origin_index: break continue if self._table[index].key == key: # 找到了key return index else: index = (index * 5 + 1) % _len # 没有找到继续找下一个位置 if index == origin_index: break return None # 找能插入的槽 def _find_slot_for_insert(self, key): index = self._hash(key) _len = len(self._table) while not self._slot_can_insert(index): # 直到找到一个可以用的槽 index = (index * 5 + 1) % _len return index # 槽是否能插入 def _slot_can_insert(self, index): return self._table[index] is HashTable.EMPTY or self._table[index] is HashTable.UNUSED # in operator,实现之后可以使用 in 操作符判断 def __contains__(self, key): index = self._find_key(key) return index is not None # 添加元素 def add(self, key, value): if key in self: # update index = self._find_key(key) self._table[index].value = value return False else: index = self._find_slot_for_insert(key) self._table[index] = Slot(key, value) self.length += 1 if self._load_factor >= 0.8: self._rehash() return True # 槽不够时,重哈希 def _rehash(self): old_table = self._table newsize = len(self._table) * 2 self._table = Array(newsize, HashTable.UNUSED) self.length = 0 for slot in old_table: if slot is not HashTable.UNUSED and slot is not HashTable.EMPTY: index = self._find_slot_for_insert(slot.key) self._table[index] = slot self.length += 1 # 获取值 def get(self, key, default=None): index = self._find_key(key) if index is None: return default else: return self._table[index].value # 移除 def remove(self, key): index = self._find_key(key) if index is None: raise KeyError() value = self._table[index].value self.length -= 1 self._table[index] = HashTable.EMPTY return value # 遍历 def __iter__(self): for slot in self._table: if slot not in (HashTable.EMPTY, HashTable.UNUSED): yield slot.key class SetADT(HashTable): # 添加元素 def add(self, key): super().add(key, True) def __and__(self, other_set): """交集 A&B""" new_set = SetADT() for element_a in self: if element_a in other_set: new_set.add(element_a) return new_set def __sub__(self, other_set): """差集 A-B""" new_set = SetADT() for element_a in self: if element_a not in other_set: new_set.add(element_a) return new_set def __or__(self, other_set): """并集 A|B""" new_set = SetADT() for element_a in self: new_set.add(element_a) for element_b in other_set: new_set.add(element_b) return new_set
集合的使用
sa = SetADT() sa.add(1) sa.add(2) sa.add(3) sb = SetADT() sb.add(3) sb.add(4) sb.add(5) print(sorted(list(sa & sb))) # [3] print(sorted(list(sa - sb))) # [1, 2] print(sorted(list(sa | sb))) # [1, 2, 3, 4, 5]
总结
以上所述是小编给大家介绍的使用python实现哈希表、字典、集合操作,希望对大家有所帮助!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]
- 林子祥《单手拍掌》华纳香港版[WAV+CUE][1G]
- 郑秀文.1997-我们的主题曲【华纳】【WAV+CUE】
- 群星.2001-生命因爱动听电影原创音乐AVCD【MEDIA】【WAV+CUE】