本文介绍了OpenCV python sklearn随机超参数搜索的实现,分享给大家,具体如下:
""" 房价预测数据集 使用sklearn执行超参数搜索 """ import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sklearn import pandas as pd import os import sys import tensorflow as tf from tensorflow_core.python.keras.api._v2 import keras # 不能使用 python from sklearn.preprocessing import StandardScaler from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split, RandomizedSearchCV from scipy.stats import reciprocal os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' assert tf.__version__.startswith('2.') # 0.打印导入模块的版本 print(tf.__version__) print(sys.version_info) for module in mpl, np, sklearn, pd, tf, keras: print("%s version:%s" % (module.__name__, module.__version__)) # 显示学习曲线 def plot_learning_curves(his): pd.DataFrame(his.history).plot(figsize=(8, 5)) plt.grid(True) plt.gca().set_ylim(0, 1) plt.show() # 1.加载数据集 california 房价 housing = fetch_california_housing() print(housing.DESCR) print(housing.data.shape) print(housing.target.shape) # 2.拆分数据集 训练集 验证集 测试集 x_train_all, x_test, y_train_all, y_test = train_test_split( housing.data, housing.target, random_state=7) x_train, x_valid, y_train, y_valid = train_test_split( x_train_all, y_train_all, random_state=11) print(x_train.shape, y_train.shape) print(x_valid.shape, y_valid.shape) print(x_test.shape, y_test.shape) # 3.数据集归一化 scaler = StandardScaler() x_train_scaled = scaler.fit_transform(x_train) x_valid_scaled = scaler.fit_transform(x_valid) x_test_scaled = scaler.fit_transform(x_test) # 创建keras模型 def build_model(hidden_layers=1, # 中间层的参数 layer_size=30, learning_rate=3e-3): # 创建网络层 model = keras.models.Sequential() model.add(keras.layers.Dense(layer_size, activation="relu", input_shape=x_train.shape[1:])) # 隐藏层设置 for _ in range(hidden_layers - 1): model.add(keras.layers.Dense(layer_size, activation="relu")) model.add(keras.layers.Dense(1)) # 优化器学习率 optimizer = keras.optimizers.SGD(lr=learning_rate) model.compile(loss="mse", optimizer=optimizer) return model def main(): # RandomizedSearchCV # 1.转化为sklearn的model sk_learn_model = keras.wrappers.scikit_learn.KerasRegressor(build_model) callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)] history = sk_learn_model.fit(x_train_scaled, y_train, epochs=100, validation_data=(x_valid_scaled, y_valid), callbacks=callbacks) # 2.定义超参数集合 # f(x) = 1/(x*log(b/a)) a <= x <= b param_distribution = { "hidden_layers": [1, 2, 3, 4], "layer_size": np.arange(1, 100), "learning_rate": reciprocal(1e-4, 1e-2), } # 3.执行超搜索参数 # cross_validation:训练集分成n份, n-1训练, 最后一份验证. random_search_cv = RandomizedSearchCV(sk_learn_model, param_distribution, n_iter=10, cv=3, n_jobs=1) random_search_cv.fit(x_train_scaled, y_train, epochs=100, validation_data=(x_valid_scaled, y_valid), callbacks=callbacks) # 4.显示超参数 print(random_search_cv.best_params_) print(random_search_cv.best_score_) print(random_search_cv.best_estimator_) model = random_search_cv.best_estimator_.model print(model.evaluate(x_test_scaled, y_test)) # 5.打印模型训练过程 plot_learning_curves(history) if __name__ == '__main__': main()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
更新日志
2024年11月20日
2024年11月20日
- 罗大佑-无法盗版的青春套装版10CD【WAV】
- 张学友《意乱情迷》蜚声环球 2024 [WAV+CUE][1G]
- 柏菲《好歌30年特别版2CD》最好听的影视歌曲[低速原抓WAV+CUE][1G]
- 张学友《世纪10星·永恒篇》香港版[WAV+CUE][1G]
- 模拟之声慢刻CD《刘德海.琵琶独奏精逊【低速原抓WAV+CUE】
- Jamettone-18052023—improv(EDit)(2024)【FLAC】
- 【索尼精芽20首最棒的苏格兰歌曲集【FLAC】
- 池约翰C.J《少年白马醉春风2 动画原声带》[320K/MP3][26.67MB]
- 池约翰C.J《少年白马醉春风2 动画原声带》[FLAC/分轨][144.13MB]
- 陈致逸《幻想乐园 Fantasyland》[320K/MP3][120.54MB]
- 席卷全球最红舞曲《火辣辣DJ[英文版]》[DTS-WAV]
- 群星-席卷全球最红舞曲《火辣辣DJ中文版》【WAV】
- 模拟之声慢刻CD《声入人心[年度发烧人声严选]》[低速原抓WAV+CUE]
- 陈致逸《幻想乐园 Fantasyland》[FLAC/分轨][554.27MB]
- Rhymist / LusciousBB《年轮》[320K/MP3][76.52MB]