本文将原始的numpy array数据在pytorch下封装为Dataset类的数据集,为后续深度网络训练提供数据。
加载并保存图像信息
首先导入需要的库,定义各种路径。
import os import matplotlib from keras.datasets import mnist import numpy as np from torch.utils.data.dataset import Dataset from PIL import Image import scipy.misc root_path = 'E:/coding_ex/pytorch/Alexnet/data/' base_path = 'baseset/' training_path = 'trainingset/' test_path = 'testset/'
这里将数据集分为三类,baseset为所有数据(trainingset+testset),trainingset是训练集,testset是测试集。直接通过keras.dataset加载mnist数据集,不能自动下载的话可以手动下载.npz并保存至相应目录下。
def LoadData(root_path, base_path, training_path, test_path): (x_train, y_train), (x_test, y_test) = mnist.load_data() x_baseset = np.concatenate((x_train, x_test)) y_baseset = np.concatenate((y_train, y_test)) train_num = len(x_train) test_num = len(x_test) #baseset file_img = open((os.path.join(root_path, base_path)+'baseset_img.txt'),'w') file_label = open((os.path.join(root_path, base_path)+'baseset_label.txt'),'w') for i in range(train_num + test_num): file_img.write(root_path + base_path + 'img/' + str(i) + '.png\n') #name file_label.write(str(y_baseset[i])+'\n') #label # scipy.misc.imsave(root_path + base_path + '/img/'+str(i) + '.png', x_baseset[i]) matplotlib.image.imsave(root_path + base_path + 'img/'+str(i) + '.png', x_baseset[i]) file_img.close() file_label.close() #trainingset file_img = open((os.path.join(root_path, training_path)+'trainingset_img.txt'),'w') file_label = open((os.path.join(root_path, training_path)+'trainingset_label.txt'),'w') for i in range(train_num): file_img.write(root_path + training_path + 'img/' + str(i) + '.png\n') #name file_label.write(str(y_train[i])+'\n') #label # scipy.misc.imsave(root_path + training_path + '/img/'+str(i) + '.png', x_train[i]) matplotlib.image.imsave(root_path + training_path + 'img/'+str(i) + '.png', x_train[i]) file_img.close() file_label.close() #testset file_img = open((os.path.join(root_path, test_path)+'testset_img.txt'),'w') file_label = open((os.path.join(root_path, test_path)+'testset_label.txt'),'w') for i in range(test_num): file_img.write(root_path + test_path + 'img/' + str(i) + '.png\n') #name file_label.write(str(y_test[i])+'\n') #label # scipy.misc.imsave(root_path + test_path + '/img/'+str(i) + '.png', x_test[i]) matplotlib.image.imsave(root_path + test_path + 'img/'+str(i) + '.png', x_test[i]) file_img.close() file_label.close()
使用这段代码时,需要建立相应的文件夹及.txt文件,./data文件夹结构如下:
/img文件夹
由于mnist数据集其实是灰度图,这里用matplotlib保存的图像是伪彩色图像。
如果用scipy.misc.imsave的话保存的则是灰度图像。
xxx_img.txt文件
xxx_img.txt文件中存放的是每张图像的名字
xxx_label.txt文件
xxx_label.txt文件中存放的是类别标记
这里记得保存的时候一行为一个图像信息,便于后续读取。
定义自己的Dataset类
pytorch训练数据时需要数据集为Dataset类,便于迭代等等,这里将加载保存之后的数据封装成Dataset类,继承该类需要写初始化方法(__init__),获取指定下标数据的方法__getitem__),获取数据个数的方法(__len__)。这里尤其需要注意的是要把label转为LongTensor类型的。
class DataProcessingMnist(Dataset): def __init__(self, root_path, imgfile_path, labelfile_path, imgdata_path, transform = None): self.root_path = root_path self.transform = transform self.imagedata_path = imgdata_path img_file = open((root_path + imgfile_path),'r') self.image_name = [x.strip() for x in img_file] img_file.close() label_file = open((root_path + labelfile_path), 'r') label = [int(x.strip()) for x in label_file] label_file.close() self.label = torch.LongTensor(label)#这句很重要,一定要把label转为LongTensor类型的 def __getitem__(self, idx): image = Image.open(str(self.image_name[idx])) image = image.convert('RGB') if self.transform is not None: image = self.transform(image) label = self.label[idx] return image, label def __len__(self): return len(self.image_name)
定义完自己的类之后可以测试一下。
LoadData(root_path, base_path, training_path, test_path) training_imgfile = training_path + 'trainingset_img.txt' training_labelfile = training_path + 'trainingset_label.txt' training_imgdata = training_path + 'img/' #实例化一个类 dataset = DataProcessingMnist(root_path, training_imgfile, training_labelfile, training_imgdata)
得到图像名称
name = dataset.image_name
这里我们可以单独输出某一个名称看一下是否有换行符
print(name[0]) >'E:/coding_ex/pytorch/Alexnet/data/trainingset/img/0.png'
如果定义类的时候self.image_name = [x.strip() for x in img_file]这句没有strip掉,则输出的值将为'E:/coding_ex/pytorch/Alexnet/data/trainingset/img/0.png\n'
获取固定下标的图像
im, label = dataset.__getitem__(0)
得到结果
以上这篇pytorch实现建立自己的数据集(以mnist为例)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 第五街的士高《印度激情版》3CD [WAV+CUE][2.4G]
- 三国志8重制版哪个武将智力高 三国志8重制版智力武将排行一览
- 三国志8重制版哪个武将好 三国志8重制版武将排行一览
- 三国志8重制版武将图像怎么保存 三国志8重制版武将图像设置方法
- 何方.1990-我不是那种人【林杰唱片】【WAV+CUE】
- 张惠妹.1999-妹力新世纪2CD【丰华】【WAV+CUE】
- 邓丽欣.2006-FANTASY【金牌大风】【WAV+CUE】
- 饭制《黑神话》蜘蛛四妹手办
- 《燕云十六声》回应跑路:年内公测版本完成95%
- 网友发现国内版《双城之战》第二季有删减:亲亲环节没了!
- 邓丽君2024-《漫步人生路》头版限量编号MQA-UHQCD[WAV+CUE]
- SergeProkofievplaysProkofiev[Dutton][FLAC+CUE]
- 永恒英文金曲精选4《TheBestOfEverlastingFavouritesVol.4》[WAV+CUE]
- 群星《国风超有戏 第9期》[320K/MP3][13.63MB]
- 群星《国风超有戏 第9期》[FLAC/分轨][72.56MB]