Tensorflow可以使用训练好的模型对新的数据进行测试,有两种方法:第一种方法是调用模型和训练在同一个py文件中,中情况比较简单;第二种是训练过程和调用模型过程分别在两个py文件中。本文将讲解第二种方法。
模型的保存
tensorflow提供可保存训练模型的接口,使用起来也不是很难,直接上代码讲解:
#网络结构 w1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1)) b1 = tf.Variable(tf.zeros([h1_units])) y = tf.nn.softmax(tf.matmul(w1, x) + b1) tf.add_to_collection('network-output', y) x = tf.placeholder(tf.float32, [None, in_units], name='x') y_ = tf.placeholder(tf.float32, [None, 10], name='y_') #损失函数与优化函数 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(rate).minimize(cross_entropy) saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) saver.save(sess,"save/model.ckpt") train_step.run({x: train_x, y_: train_y})
以上代码就完成了模型的保存,值得注意的是下面这行代码
tf.add_to_collection('network-output', y)
这行代码保存了神经网络的输出,这个在后面使用导入模型过程中起到关键作用。
模型的导入
模型训练并保存后就可以导入来评估模型在测试集上的表现,网上很多文章只用简单的四则运算来做例子,让人看的头大。还是先上代码:
with tf.Session() as sess: saver = tf.train.import_meta_graph('./model.ckpt.meta') saver.restore(sess, './model.ckpt')# .data文件 pred = tf.get_collection('network-output')[0] graph = tf.get_default_graph() x = graph.get_operation_by_name('x').outputs[0] y_ = graph.get_operation_by_name('y_').outputs[0] y = sess.run(pred, feed_dict={x: test_x, y_: test_y})
讲解一下关键的代码,首先是pred = tf.get_collection('pred_network')[0],这行代码获得训练过程中网络输出的“接口”,简单理解就是,通过tf.get_collection() 这个方法获取了整个网络结构。获得网络结构后我们就需要喂它对应的数据y = sess.run(pred, feed_dict={x: test_x, y_: test_y}) 在训练过程中我们的输入是
x = tf.placeholder(tf.float32, [None, in_units], name='x') y_ = tf.placeholder(tf.float32, [None, 10], name='y_')
因此导入模型后所需的输入也要与之对应可使用以下代码获得:
x = graph.get_operation_by_name('x').outputs[0] y_ = graph.get_operation_by_name('y_').outputs[0]
使用模型的最后一步就是输入测试集,然后按照训练好的网络进行评估
sess.run(pred, feed_dict={x: test_x, y_: test_y})
理解下这行代码,sess.run() 的函数原型为
run(fetches, feed_dict=None, options=None, run_metadata=None)
Tensorflow对 feed_dict 执行fetches操作,因此在导入模型后的运算就是,按照训练的网络计算测试输入的数据。
以上这篇Tensorflow实现在训练好的模型上进行测试就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]
- 林子祥《单手拍掌》华纳香港版[WAV+CUE][1G]
- 郑秀文.1997-我们的主题曲【华纳】【WAV+CUE】
- 群星.2001-生命因爱动听电影原创音乐AVCD【MEDIA】【WAV+CUE】