方式1:静态获取,通过直接解析checkpoint文件获取变量名及变量值

通过

reader = tf.train.NewCheckpointReader(model_path)

或者通过:

from tensorflow.python import pywrap_tensorflow
reader = pywrap_tensorflow.NewCheckpointReader(model_path)

代码:

model_path = "./checkpoints/model.ckpt-75000"
## 下面两个reader作用等价
#reader = pywrap_tensorflow.NewCheckpointReader(model_path)
reader = tf.train.NewCheckpointReader(model_path)
 
## 用reader获取变量字典,key是变量名,value是变量的shape
var_to_shape_map = reader.get_variable_to_shape_map()
for var_name in var_to_shape_map.keys():
 #用reader获取变量值
 var_value = reader.get_tensor(var_name)
 
 print("var_name",var_name)
 print("var_value",var_value)

方式2:动态获取,先加载checkpoint模型,然后用graph.get_tensor_by_name()获取变量值

代码 (注意:要先在脚本中构建model中对应的变量及scope):

 model_path = "./checkpoints/model.ckpt-75000"
 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 with tf.Session(config=config) as sess:
  ## 获取待加载的变量列表
  trainable_vars = tf.trainable_variables()
  g_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope="generator")
  d_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='discriminator')
  flow_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,scope='flow_net')
  var_restore = g_vars + d_vars
 
  ## 仅加载目标变量
  loader = tf.train.Saver(var_restore)
  loader.restore(sess,model_path)
 
  ## 显示加载的变量值
  graph = tf.get_default_graph()
  for var in var_restore:
   tensor = graph.get_tensor_by_name(var.name)
   print("=======变量名=======",tensor)
   print("-------变量值-------",sess.run(tensor))

以上这篇tensorflow 获取checkpoint中的变量列表实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?